|
| 1 | +--- |
| 2 | +comments: true |
| 3 | +difficulty: 中等 |
| 4 | +edit_url: https://github.com/doocs/leetcode/edit/main/solution/3200-3299/3253.Construct%20String%20with%20Minimum%20Cost%20%28Easy%29/README.md |
| 5 | +--- |
| 6 | + |
| 7 | +<!-- problem:start --> |
| 8 | + |
| 9 | +# [3253. Construct String with Minimum Cost (Easy) 🔒](https://leetcode.cn/problems/construct-string-with-minimum-cost-easy) |
| 10 | + |
| 11 | +[English Version](/solution/3200-3299/3253.Construct%20String%20with%20Minimum%20Cost%20%28Easy%29/README_EN.md) |
| 12 | + |
| 13 | +## 题目描述 |
| 14 | + |
| 15 | +<!-- description:start --> |
| 16 | + |
| 17 | +<p>You are given a string <code>target</code>, an array of strings <code>words</code>, and an integer array <code>costs</code>, both arrays of the same length.</p> |
| 18 | + |
| 19 | +<p>Imagine an empty string <code>s</code>.</p> |
| 20 | + |
| 21 | +<p>You can perform the following operation any number of times (including <strong>zero</strong>):</p> |
| 22 | + |
| 23 | +<ul> |
| 24 | + <li>Choose an index <code>i</code> in the range <code>[0, words.length - 1]</code>.</li> |
| 25 | + <li>Append <code>words[i]</code> to <code>s</code>.</li> |
| 26 | + <li>The cost of operation is <code>costs[i]</code>.</li> |
| 27 | +</ul> |
| 28 | + |
| 29 | +<p>Return the <strong>minimum</strong> cost to make <code>s</code> equal to <code>target</code>. If it's not possible, return -1.</p> |
| 30 | + |
| 31 | +<p> </p> |
| 32 | +<p><strong class="example">Example 1:</strong></p> |
| 33 | + |
| 34 | +<div class="example-block"> |
| 35 | +<p><strong>Input:</strong> <span class="example-io">target = "abcdef", words = ["abdef","abc","d","def","ef"], costs = [100,1,1,10,5]</span></p> |
| 36 | + |
| 37 | +<p><strong>Output:</strong> <span class="example-io">7</span></p> |
| 38 | + |
| 39 | +<p><strong>Explanation:</strong></p> |
| 40 | + |
| 41 | +<p>The minimum cost can be achieved by performing the following operations:</p> |
| 42 | + |
| 43 | +<ul> |
| 44 | + <li>Select index 1 and append <code>"abc"</code> to <code>s</code> at a cost of 1, resulting in <code>s = "abc"</code>.</li> |
| 45 | + <li>Select index 2 and append <code>"d"</code> to <code>s</code> at a cost of 1, resulting in <code>s = "abcd"</code>.</li> |
| 46 | + <li>Select index 4 and append <code>"ef"</code> to <code>s</code> at a cost of 5, resulting in <code>s = "abcdef"</code>.</li> |
| 47 | +</ul> |
| 48 | +</div> |
| 49 | + |
| 50 | +<p><strong class="example">Example 2:</strong></p> |
| 51 | + |
| 52 | +<div class="example-block"> |
| 53 | +<p><strong>Input:</strong> <span class="example-io">target = "aaaa", words = ["z","zz","zzz"], costs = [1,10,100]</span></p> |
| 54 | + |
| 55 | +<p><strong>Output:</strong> <span class="example-io">-1</span></p> |
| 56 | + |
| 57 | +<p><strong>Explanation:</strong></p> |
| 58 | + |
| 59 | +<p>It is impossible to make <code>s</code> equal to <code>target</code>, so we return -1.</p> |
| 60 | +</div> |
| 61 | + |
| 62 | +<p> </p> |
| 63 | +<p><strong>Constraints:</strong></p> |
| 64 | + |
| 65 | +<ul> |
| 66 | + <li><code>1 <= target.length <= 2000</code></li> |
| 67 | + <li><code>1 <= words.length == costs.length <= 50</code></li> |
| 68 | + <li><code>1 <= words[i].length <= target.length</code></li> |
| 69 | + <li><code>target</code> and <code>words[i]</code> consist only of lowercase English letters.</li> |
| 70 | + <li><code>1 <= costs[i] <= 10<sup>5</sup></code></li> |
| 71 | +</ul> |
| 72 | + |
| 73 | +<!-- description:end --> |
| 74 | + |
| 75 | +## 解法 |
| 76 | + |
| 77 | +<!-- solution:start --> |
| 78 | + |
| 79 | +### 方法一:字典树 + 记忆化搜索 |
| 80 | + |
| 81 | +我们首先创建一个字典树 $\textit{trie}$,字典树的每个节点包含一个长度为 $26$ 的数组 $\textit{children}$,数组中的每个元素都是一个指向下一个节点的指针。字典树的每个节点还包含一个 $\textit{cost}$ 变量,表示从根节点到当前节点的最小花费。 |
| 82 | + |
| 83 | +我们遍历 $\textit{words}$ 数组,将每个单词插入到字典树中,同时更新每个节点的 $\textit{cost}$ 变量。 |
| 84 | + |
| 85 | +接下来,我们定义一个记忆化搜索函数 $\textit{dfs}(i)$,表示从 $\textit{target}[i]$ 开始构造字符串的最小花费。那么答案就是 $\textit{dfs}(0)$。 |
| 86 | + |
| 87 | +函数 $\textit{dfs}(i)$ 的计算过程如下: |
| 88 | + |
| 89 | +- 如果 $i \geq \textit{len}(\textit{target})$,表示已经构造完整个字符串,返回 $0$。 |
| 90 | +- 否则,我们从 $\textit{trie}$ 的根节点开始,遍历 $\textit{target}[i]$ 开始的所有后缀,找到最小花费,即 $\textit{trie}$ 中的 $\textit{cost}$ 变量,加上 $\textit{dfs}(j+1)$ 的结果,其中 $j$ 是 $\textit{target}[i]$ 开始的后缀的结束位置。 |
| 91 | + |
| 92 | +最后,如果 $\textit{dfs}(0) < \textit{inf}$,返回 $\textit{dfs}(0)$,否则返回 $-1$。 |
| 93 | + |
| 94 | +时间复杂度 $O(n^2 + L)$,空间复杂度 $O(n + L)$。其中 $n$ 是 $\textit{target}$ 的长度,而 $L$ 是 $\textit{words}$ 数组中所有单词的长度之和。 |
| 95 | + |
| 96 | +<!-- tabs:start --> |
| 97 | + |
| 98 | +#### Python3 |
| 99 | + |
| 100 | +```python |
| 101 | +class Trie: |
| 102 | + def __init__(self): |
| 103 | + self.children: List[Optional[Trie]] = [None] * 26 |
| 104 | + self.cost = inf |
| 105 | + |
| 106 | + def insert(self, word: str, cost: int): |
| 107 | + node = self |
| 108 | + for c in word: |
| 109 | + idx = ord(c) - ord("a") |
| 110 | + if node.children[idx] is None: |
| 111 | + node.children[idx] = Trie() |
| 112 | + node = node.children[idx] |
| 113 | + node.cost = min(node.cost, cost) |
| 114 | + |
| 115 | + |
| 116 | +class Solution: |
| 117 | + def minimumCost(self, target: str, words: List[str], costs: List[int]) -> int: |
| 118 | + @cache |
| 119 | + def dfs(i: int) -> int: |
| 120 | + if i >= len(target): |
| 121 | + return 0 |
| 122 | + ans = inf |
| 123 | + node = trie |
| 124 | + for j in range(i, len(target)): |
| 125 | + idx = ord(target[j]) - ord("a") |
| 126 | + if node.children[idx] is None: |
| 127 | + return ans |
| 128 | + node = node.children[idx] |
| 129 | + ans = min(ans, node.cost + dfs(j + 1)) |
| 130 | + return ans |
| 131 | + |
| 132 | + trie = Trie() |
| 133 | + for word, cost in zip(words, costs): |
| 134 | + trie.insert(word, cost) |
| 135 | + ans = dfs(0) |
| 136 | + return ans if ans < inf else -1 |
| 137 | +``` |
| 138 | + |
| 139 | +#### Java |
| 140 | + |
| 141 | +```java |
| 142 | +class Trie { |
| 143 | + public final int inf = 1 << 29; |
| 144 | + public Trie[] children = new Trie[26]; |
| 145 | + public int cost = inf; |
| 146 | + |
| 147 | + public void insert(String word, int cost) { |
| 148 | + Trie node = this; |
| 149 | + for (char c : word.toCharArray()) { |
| 150 | + int idx = c - 'a'; |
| 151 | + if (node.children[idx] == null) { |
| 152 | + node.children[idx] = new Trie(); |
| 153 | + } |
| 154 | + node = node.children[idx]; |
| 155 | + } |
| 156 | + node.cost = Math.min(node.cost, cost); |
| 157 | + } |
| 158 | +} |
| 159 | + |
| 160 | +class Solution { |
| 161 | + private Trie trie = new Trie(); |
| 162 | + private char[] target; |
| 163 | + private Integer[] f; |
| 164 | + |
| 165 | + public int minimumCost(String target, String[] words, int[] costs) { |
| 166 | + for (int i = 0; i < words.length; ++i) { |
| 167 | + trie.insert(words[i], costs[i]); |
| 168 | + } |
| 169 | + this.target = target.toCharArray(); |
| 170 | + f = new Integer[target.length()]; |
| 171 | + int ans = dfs(0); |
| 172 | + return ans < trie.inf ? ans : -1; |
| 173 | + } |
| 174 | + |
| 175 | + private int dfs(int i) { |
| 176 | + if (i >= target.length) { |
| 177 | + return 0; |
| 178 | + } |
| 179 | + if (f[i] != null) { |
| 180 | + return f[i]; |
| 181 | + } |
| 182 | + f[i] = trie.inf; |
| 183 | + Trie node = trie; |
| 184 | + for (int j = i; j < target.length; ++j) { |
| 185 | + int idx = target[j] - 'a'; |
| 186 | + if (node.children[idx] == null) { |
| 187 | + return f[i]; |
| 188 | + } |
| 189 | + node = node.children[idx]; |
| 190 | + f[i] = Math.min(f[i], node.cost + dfs(j + 1)); |
| 191 | + } |
| 192 | + return f[i]; |
| 193 | + } |
| 194 | +} |
| 195 | +``` |
| 196 | + |
| 197 | +#### C++ |
| 198 | + |
| 199 | +```cpp |
| 200 | +const int inf = 1 << 29; |
| 201 | + |
| 202 | +class Trie { |
| 203 | +public: |
| 204 | + Trie* children[26]{}; |
| 205 | + int cost = inf; |
| 206 | + |
| 207 | + void insert(string& word, int cost) { |
| 208 | + Trie* node = this; |
| 209 | + for (char c : word) { |
| 210 | + int idx = c - 'a'; |
| 211 | + if (!node->children[idx]) { |
| 212 | + node->children[idx] = new Trie(); |
| 213 | + } |
| 214 | + node = node->children[idx]; |
| 215 | + } |
| 216 | + node->cost = min(node->cost, cost); |
| 217 | + } |
| 218 | +}; |
| 219 | + |
| 220 | +class Solution { |
| 221 | +public: |
| 222 | + int minimumCost(string target, vector<string>& words, vector<int>& costs) { |
| 223 | + Trie* trie = new Trie(); |
| 224 | + for (int i = 0; i < words.size(); ++i) { |
| 225 | + trie->insert(words[i], costs[i]); |
| 226 | + } |
| 227 | + int n = target.length(); |
| 228 | + int f[n]; |
| 229 | + memset(f, 0, sizeof(f)); |
| 230 | + auto dfs = [&](auto&& dfs, int i) -> int { |
| 231 | + if (i >= n) { |
| 232 | + return 0; |
| 233 | + } |
| 234 | + if (f[i]) { |
| 235 | + return f[i]; |
| 236 | + } |
| 237 | + f[i] = inf; |
| 238 | + Trie* node = trie; |
| 239 | + for (int j = i; j < n; ++j) { |
| 240 | + int idx = target[j] - 'a'; |
| 241 | + if (!node->children[idx]) { |
| 242 | + return f[i]; |
| 243 | + } |
| 244 | + node = node->children[idx]; |
| 245 | + f[i] = min(f[i], node->cost + dfs(dfs, j + 1)); |
| 246 | + } |
| 247 | + return f[i]; |
| 248 | + }; |
| 249 | + int ans = dfs(dfs, 0); |
| 250 | + return ans < inf ? ans : -1; |
| 251 | + } |
| 252 | +}; |
| 253 | +``` |
| 254 | +
|
| 255 | +#### Go |
| 256 | +
|
| 257 | +```go |
| 258 | +const inf = 1 << 29 |
| 259 | +
|
| 260 | +type Trie struct { |
| 261 | + children [26]*Trie |
| 262 | + cost int |
| 263 | +} |
| 264 | +
|
| 265 | +func NewTrie() *Trie { |
| 266 | + return &Trie{cost: inf} |
| 267 | +} |
| 268 | +
|
| 269 | +func (t *Trie) insert(word string, cost int) { |
| 270 | + node := t |
| 271 | + for _, c := range word { |
| 272 | + idx := c - 'a' |
| 273 | + if node.children[idx] == nil { |
| 274 | + node.children[idx] = NewTrie() |
| 275 | + } |
| 276 | + node = node.children[idx] |
| 277 | + } |
| 278 | + node.cost = min(node.cost, cost) |
| 279 | +} |
| 280 | +
|
| 281 | +func minimumCost(target string, words []string, costs []int) int { |
| 282 | + trie := NewTrie() |
| 283 | + for i, word := range words { |
| 284 | + trie.insert(word, costs[i]) |
| 285 | + } |
| 286 | +
|
| 287 | + n := len(target) |
| 288 | + f := make([]int, n) |
| 289 | + var dfs func(int) int |
| 290 | + dfs = func(i int) int { |
| 291 | + if i >= n { |
| 292 | + return 0 |
| 293 | + } |
| 294 | + if f[i] != 0 { |
| 295 | + return f[i] |
| 296 | + } |
| 297 | + f[i] = inf |
| 298 | + node := trie |
| 299 | + for j := i; j < n; j++ { |
| 300 | + idx := target[j] - 'a' |
| 301 | + if node.children[idx] == nil { |
| 302 | + return f[i] |
| 303 | + } |
| 304 | + node = node.children[idx] |
| 305 | + f[i] = min(f[i], node.cost+dfs(j+1)) |
| 306 | + } |
| 307 | + return f[i] |
| 308 | + } |
| 309 | + if ans := dfs(0); ans < inf { |
| 310 | + return ans |
| 311 | + } |
| 312 | + return -1 |
| 313 | +} |
| 314 | +``` |
| 315 | + |
| 316 | +#### TypeScript |
| 317 | + |
| 318 | +```ts |
| 319 | +const inf = 1 << 29; |
| 320 | + |
| 321 | +class Trie { |
| 322 | + children: (Trie | null)[]; |
| 323 | + cost: number; |
| 324 | + |
| 325 | + constructor() { |
| 326 | + this.children = Array(26).fill(null); |
| 327 | + this.cost = inf; |
| 328 | + } |
| 329 | + |
| 330 | + insert(word: string, cost: number): void { |
| 331 | + let node: Trie = this; |
| 332 | + for (const c of word) { |
| 333 | + const idx = c.charCodeAt(0) - 97; |
| 334 | + if (!node.children[idx]) { |
| 335 | + node.children[idx] = new Trie(); |
| 336 | + } |
| 337 | + node = node.children[idx]!; |
| 338 | + } |
| 339 | + node.cost = Math.min(node.cost, cost); |
| 340 | + } |
| 341 | +} |
| 342 | + |
| 343 | +function minimumCost(target: string, words: string[], costs: number[]): number { |
| 344 | + const trie = new Trie(); |
| 345 | + for (let i = 0; i < words.length; ++i) { |
| 346 | + trie.insert(words[i], costs[i]); |
| 347 | + } |
| 348 | + |
| 349 | + const n = target.length; |
| 350 | + const f: number[] = Array(n).fill(0); |
| 351 | + const dfs = (i: number): number => { |
| 352 | + if (i >= n) { |
| 353 | + return 0; |
| 354 | + } |
| 355 | + if (f[i]) { |
| 356 | + return f[i]; |
| 357 | + } |
| 358 | + f[i] = inf; |
| 359 | + let node: Trie | null = trie; |
| 360 | + for (let j = i; j < n; ++j) { |
| 361 | + const idx = target.charCodeAt(j) - 97; |
| 362 | + if (!node?.children[idx]) { |
| 363 | + return f[i]; |
| 364 | + } |
| 365 | + node = node.children[idx]; |
| 366 | + f[i] = Math.min(f[i], node!.cost + dfs(j + 1)); |
| 367 | + } |
| 368 | + return f[i]; |
| 369 | + }; |
| 370 | + |
| 371 | + const ans = dfs(0); |
| 372 | + return ans < inf ? ans : -1; |
| 373 | +} |
| 374 | +``` |
| 375 | + |
| 376 | +<!-- tabs:end --> |
| 377 | + |
| 378 | +<!-- solution:end --> |
| 379 | + |
| 380 | +<!-- problem:end --> |
0 commit comments