Skip to content

feat: update lc problems #3381

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Aug 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ tags:
<li><code>'*'</code> 匹配零个或多个前面的那一个元素</li>
</ul>

<p>所谓匹配,是要涵盖&nbsp;<strong>整个&nbsp;</strong>字符串&nbsp;<code>s</code>的,而不是部分字符串。</p>
<p>所谓匹配,是要涵盖&nbsp;<strong>整个&nbsp;</strong>字符串&nbsp;<code>s</code> 的,而不是部分字符串。</p>
&nbsp;

<p><strong>示例 1:</strong></p>
Expand Down
2 changes: 1 addition & 1 deletion solution/0000-0099/0075.Sort Colors/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ tags:

<!-- description:start -->

<p>给定一个包含红色、白色和蓝色、共&nbsp;<code>n</code><em> </em>个元素的数组<meta charset="UTF-8" />&nbsp;<code>nums</code>&nbsp;,<strong><a href="https://baike.baidu.com/item/%E5%8E%9F%E5%9C%B0%E7%AE%97%E6%B3%95" target="_blank">原地</a></strong>对它们进行排序,使得相同颜色的元素相邻,并按照红色、白色、蓝色顺序排列。</p>
<p>给定一个包含红色、白色和蓝色、共&nbsp;<code>n</code><em> </em>个元素的数组<meta charset="UTF-8" />&nbsp;<code>nums</code>&nbsp;,<strong><a href="https://baike.baidu.com/item/%E5%8E%9F%E5%9C%B0%E7%AE%97%E6%B3%95" target="_blank">原地</a>&nbsp;</strong>对它们进行排序,使得相同颜色的元素相邻,并按照红色、白色、蓝色顺序排列。</p>

<p>我们使用整数 <code>0</code>、&nbsp;<code>1</code> 和 <code>2</code> 分别表示红色、白色和蓝色。</p>

Expand Down
2 changes: 1 addition & 1 deletion solution/0000-0099/0085.Maximal Rectangle/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ tags:
<p>&nbsp;</p>

<p><strong>示例 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0085.Maximal%20Rectangle/images/maximal.jpg" style="width: 402px; height: 322px;" />
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0000-0099/0085.Maximal%20Rectangle/images/1722912576-boIxpm-image.png" style="width: 402px; height: 322px;" />
<pre>
<strong>输入:</strong>matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
<strong>输出:</strong>6
Expand Down
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
56 changes: 25 additions & 31 deletions solution/0200-0299/0277.Find the Celebrity/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,62 +18,56 @@ tags:

<!-- description:start -->

<p>假设你是一个专业的狗仔,参加了一个 <code>n</code> 人派对,其中每个人被从 <code>0</code> 到 <code>n - 1</code> 标号。在这个派对人群当中可能存在一位 “名人”。所谓 “名人” 的定义是:其他所有 <code>n - 1</code> 个人都认识他/她,而他/她并不认识其他任何人。</p>
<p>假设你是一个专业的狗仔,参加了一个&nbsp;<code>n</code>&nbsp;人派对,其中每个人被从&nbsp;<code>0</code>&nbsp;到&nbsp;<code>n - 1</code>&nbsp;标号。在这个派对人群当中可能存在一位&nbsp;“名人”。所谓 “名人” 的定义是:其他所有&nbsp;<code>n - 1</code>&nbsp;个人都认识他/她,而他/她并不认识其他任何人。</p>

<p>现在你想要确认这个 “名人” 是谁,或者确定这里没有 “名人”。而你唯一能做的就是问诸如 “A 你好呀,请问你认不认识 B呀?” 的问题,以确定 A 是否认识 B。你需要在(渐近意义上)尽可能少的问题内来确定这位 “名人” 是谁(或者确定这里没有 “名人”)。</p>
<p>现在你想要确认这个 “名人” 是谁,或者确定这里没有&nbsp;“名人”。而你唯一能做的就是问诸如 “A&nbsp;你好呀,请问你认不认识&nbsp;B呀?”&nbsp;的问题,以确定 A 是否认识 B。你需要在(渐近意义上)尽可能少的问题内来确定这位 “名人” 是谁(或者确定这里没有 “名人”)。</p>

<p>在本题中,你可以使用辅助函数 <code>bool knows(a, b)</code> 获取到 A 是否认识 B。请你来实现一个函数 <code>int findCelebrity(n)</code>。</p>
<p>在本题中,你可以使用辅助函数&nbsp;<code>bool knows(a, b)</code>&nbsp;获取到 A&nbsp;是否认识 B。请你来实现一个函数&nbsp;<code>int findCelebrity(n)</code>。</p>

<p>派对最多只会有一个 “名人” 参加。若 “名人” 存在,请返回他/她的编号;若 “名人” 不存在,请返回 <code>-1</code>。</p>
<p>派对最多只会有一个 “名人” 参加。若&nbsp;“名人” 存在,请返回他/她的编号;若&nbsp;“名人”&nbsp;不存在,请返回&nbsp;<code>-1</code>。</p>

<p> </p>

<p><strong>示例 1:</strong></p>

<p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0277.Find%20the%20Celebrity/images/277_example_1_bold.png" style="height: 181px; width: 186px;" /></p>
<p>&nbsp;</p>

<p><strong class="example">示例 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0277.Find%20the%20Celebrity/images/g1.jpg" style="width: 224px; height: 145px;" />
<pre>
<strong>输入: </strong>graph = [
  [1,1,0],
  [0,1,0],
  [1,1,1]
]
<strong>输入: </strong>graph = [[1,1,0],[0,1,0],[1,1,1]]
<strong>输出: </strong>1
<strong>解释: </strong>有编号分别为 0、1 和 2 的三个人。graph[i][j] = 1 代表编号为 i 的人认识编号为 j 的人,而 graph[i][j] = 0 则代表编号为 i 的人不认识编号为 j 的人。“名人” 是编号 1 的人,因为 0 和 2 均认识他/她,但 1 不认识任何人。
</pre>
<strong> </strong>

<p><strong>示例 2:</strong></p>

<p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0277.Find%20the%20Celebrity/images/277_example_2.png" style="height: 192px; width: 193px;" /></p>

<p><strong><strong class="example">示例&nbsp;2:</strong></strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0277.Find%20the%20Celebrity/images/g2.jpg" style="width: 224px; height: 145px;" />
<pre>
<strong>输入: </strong>graph = [
  [1,0,1],
  [1,1,0],
  [0,1,1]
]
<strong>输入: </strong>graph = [[1,0,1],[1,1,0],[0,1,1]]
<strong>输出: </strong>-1
<strong>解释: </strong>没有 “名人”
</pre>

<p> </p>
<p><strong>&nbsp;</strong></p>
<strong> </strong>

<p><strong>提示:</strong></p>
<p><strong><strong>提示:</strong></strong></p>
<strong> </strong>

<ul>
<li><code>n == graph.length</code></li>
<li><code>n == graph[i].length</code></li>
<li><code>2 <= n <= 100</code></li>
<li><code>graph[i][j]</code> 是 <code>0</code> 或 <code>1</code>.</li>
<li><code>n == graph.length == graph[i].length</code></li>
<li><code>2 &lt;= n &lt;= 100</code></li>
<li><code>graph[i][j]</code> 是 <code>0</code> 或 <code>1</code></li>
<li><code>graph[i][i] == 1</code></li>
</ul>
<strong> </strong>

<p> </p>
<p><strong>&nbsp;</strong></p>
<strong> </strong>

<p><strong>进阶:</strong>如果允许调用 API <code>knows</code> 的最大次数为 <code>3 * n</code> ,你可以设计一个不超过最大调用次数的解决方案吗?</p>
<p><strong><strong>进阶:</strong></strong>如果允许调用 API <code>knows</code> 的最大次数为 <code>3 * n</code> ,你可以设计一个不超过最大调用次数的解决方案吗?</p>
<strong> </strong>

<ol>
</ol>
<strong> </strong>

<!-- description:end -->

Expand Down
Binary file not shown.
Binary file not shown.
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ tags:
- 字典树
- 哈希表
- 字符串
- 排序
---

<!-- problem:start -->
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ tags:
- Trie
- Hash Table
- String
- Sorting
---

<!-- problem:start -->
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@ comments: true
difficulty: 困难
edit_url: https://github.com/doocs/leetcode/edit/main/solution/0600-0699/0642.Design%20Search%20Autocomplete%20System/README.md
tags:
- 深度优先搜索
- 设计
- 字典树
- 字符串
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@ comments: true
difficulty: Hard
edit_url: https://github.com/doocs/leetcode/edit/main/solution/0600-0699/0642.Design%20Search%20Autocomplete%20System/README_EN.md
tags:
- Depth-First Search
- Design
- Trie
- String
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ tags:
<pre>
<strong>输入:</strong>nums = [10,5,2,6], k = 100
<strong>输出:</strong>8
<strong>解释:</strong>8 个乘积小于 100 的子数组分别为:[10]、[5]、[2],、[6]、[10,5]、[5,2]、[2,6]、[5,2,6]。
<strong>解释:</strong>8 个乘积小于 100 的子数组分别为:[10]、[5]、[2]、[6]、[10,5]、[5,2]、[2,6]、[5,2,6]。
需要注意的是 [10,5,2] 并不是乘积小于 100 的子数组。
</pre>

Expand Down
2 changes: 2 additions & 0 deletions solution/0800-0899/0840.Magic Squares In Grid/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,8 @@ tags:

<p>给定一个由整数组成的<code>row x col</code>&nbsp;的 <code>grid</code>,其中有多少个&nbsp;<code>3 × 3</code> 的 “幻方” 子矩阵?(每个子矩阵都是连续的)。</p>

<p>注意:虽然幻方只能包含 1 到 9 的数字,但&nbsp;<code>grid</code> 可以包含最多15的数字。</p>

<p>&nbsp;</p>

<p><strong>示例 1:</strong></p>
Expand Down
6 changes: 4 additions & 2 deletions solution/0800-0899/0840.Magic Squares In Grid/README_EN.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,9 +19,11 @@ tags:

<!-- description:start -->

<p>A <code>3 x 3</code> magic square is a <code>3 x 3</code> grid filled with distinct numbers <strong>from </strong><code>1</code><strong> to </strong><code>9</code> such that each row, column, and both diagonals all have the same sum.</p>
<p>A <code>3 x 3</code> <strong>magic square</strong> is a <code>3 x 3</code> grid filled with distinct numbers <strong>from </strong>1<strong> to </strong>9 such that each row, column, and both diagonals all have the same sum.</p>

<p>Given a <code>row x col</code>&nbsp;<code>grid</code>&nbsp;of integers, how many <code>3 x 3</code> &quot;magic square&quot; subgrids are there?&nbsp; (Each subgrid is contiguous).</p>
<p>Given a <code>row x col</code> <code>grid</code> of integers, how many <code>3 x 3</code> contiguous magic square subgrids are there?</p>

<p>Note: while a magic square can only contain numbers from 1 to 9, <code>grid</code> may contain numbers up to 15.</p>

<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
Expand Down
8 changes: 4 additions & 4 deletions solution/0800-0899/0898.Bitwise ORs of Subarrays/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,11 +18,11 @@ tags:

<!-- description:start -->

<p>我们有一个非负整数数组<meta charset="UTF-8" />&nbsp;<code>arr</code>&nbsp;。</p>
<p>给定一个整数数组<meta charset="UTF-8" />&nbsp;<code>arr</code>,返回所有&nbsp;<code>arr</code>&nbsp;的非空子数组的不同按位或的数量。</p>

<p>对于每个(连续的)子数组<meta charset="UTF-8" />&nbsp;<code>sub = [arr[i], arr[i + 1], ..., arr[j]]</code>&nbsp;(&nbsp;<code>i &lt;= j</code>),我们对<meta charset="UTF-8" />&nbsp;<code>sub</code>&nbsp;中的每个元素进行按位或操作,获得结果<meta charset="UTF-8" />&nbsp;<code>arr[i] | arr[i + 1] | ... | arr[j]</code>&nbsp;。</p>
<p>子数组的按位或是子数组中每个整数的按位或。含有一个整数的子数组的按位或就是该整数。</p>

<p>返回可能结果的数量。 多次出现的结果在最终答案中仅计算一次。</p>
<p><strong>子数组</strong> 是数组内连续的非空元素序列。</p>

<p>&nbsp;</p>

Expand Down Expand Up @@ -61,7 +61,7 @@ tags:

<ul>
<li><code>1 &lt;= nums.length &lt;= 5 * 10<sup>4</sup></code></li>
<li><code>0 &lt;= nums[i]&nbsp;&lt;= 10<sup>9</sup></code>​​​​​​​</li>
<li><code>0 &lt;= nums[i]&nbsp;&lt;= 10<sup>9</sup></code></li>
</ul>

<!-- description:end -->
Expand Down
23 changes: 3 additions & 20 deletions solution/0900-0999/0930.Binary Subarrays With Sum/README_EN.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,49 +24,32 @@ tags:
<p>A <strong>subarray</strong> is a contiguous part of the array.</p>

<p>&nbsp;</p>

<p><strong class="example">Example 1:</strong></p>

<pre>

<strong>Input:</strong> nums = [1,0,1,0,1], goal = 2

<strong>Output:</strong> 4

<strong>Explanation:</strong> The 4 subarrays are bolded and underlined below:

[<u><strong>1,0,1</strong></u>,0,1]

[<u><strong>1,0,1,0</strong></u>,1]

[1,<u><strong>0,1,0,1</strong></u>]

[1,0,<u><strong>1,0,1</strong></u>]

</pre>

<p><strong class="example">Example 2:</strong></p>

<pre>

<strong>Input:</strong> nums = [0,0,0,0,0], goal = 0

<strong>Output:</strong> 15

</pre>

<p>&nbsp;</p>

<p><strong>Constraints:</strong></p>

<ul>

<li><code>1 &lt;= nums.length &lt;= 3 * 10<sup>4</sup></code></li>

<li><code>nums[i]</code> is either <code>0</code> or <code>1</code>.</li>

<li><code>0 &lt;= goal &lt;= nums.length</code></li>

<li><code>1 &lt;= nums.length &lt;= 3 * 10<sup>4</sup></code></li>
<li><code>nums[i]</code> is either <code>0</code> or <code>1</code>.</li>
<li><code>0 &lt;= goal &lt;= nums.length</code></li>
</ul>

<!-- description:end -->
Expand Down
2 changes: 1 addition & 1 deletion solution/1000-1099/1002.Find Common Characters/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ tags:

<!-- description:start -->

给你一个字符串数组 <code>words</code> ,请你找出所有在 <code>words</code> 的每个字符串中都出现的共用字符( <strong>包括重复字符</strong>),并以数组形式返回。你可以按 <strong>任意顺序</strong> 返回答案。
给你一个字符串数组 <code>words</code> ,请你找出所有在 <code>words</code> 的每个字符串中都出现的共用字符(<strong>包括重复字符</strong>),并以数组形式返回。你可以按 <strong>任意顺序</strong> 返回答案。

<p>&nbsp;</p>

Expand Down
1 change: 1 addition & 0 deletions solution/1300-1399/1395.Count Number of Teams/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@ rating: 1343
source: 第 182 场周赛 Q2
tags:
- 树状数组
- 线段树
- 数组
- 动态规划
---
Expand Down
1 change: 1 addition & 0 deletions solution/1300-1399/1395.Count Number of Teams/README_EN.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@ rating: 1343
source: Weekly Contest 182 Q2
tags:
- Binary Indexed Tree
- Segment Tree
- Array
- Dynamic Programming
---
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,7 @@ tags:
我们可以使用二维前缀和来快速计算出每个子矩形中苹果的数量,定义 $s[i][j]$ 表示矩形前 $i$ 行,前 $j$ 列的子矩形中苹果的数量,那么 $s[i][j]$ 可以由 $s[i-1][j]$, $s[i][j-1]$, $s[i-1][j-1]$ 三个子矩形的苹果数量求得,具体的计算方法如下:

$$
s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + (pizza[i-1][j-1] == 'A')
s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + \textit{int}(pizza[i-1][j-1] == 'A')
$$

其中 $pizza[i-1][j-1]$ 表示矩形中第 $i$ 行,第 $j$ 列的字符,如果是苹果,则为 $1$,否则为 $0$。
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,30 @@ tags:

<!-- solution:start -->

### Solution 1
### Solution 1: 2D Prefix Sum + Memoized Search

We can use a 2D prefix sum to quickly calculate the number of apples in each sub-rectangle. Define $s[i][j]$ to represent the number of apples in the sub-rectangle that includes the first $i$ rows and the first $j$ columns. Then $s[i][j]$ can be derived from the number of apples in the three sub-rectangles $s[i-1][j]$, $s[i][j-1]$, and $s[i-1][j-1]$. The specific calculation method is as follows:

$$
s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + (pizza[i-1][j-1] == 'A')
$$

Here, $pizza[i-1][j-1]$ represents the character at the $i$-th row and $j$-th column in the rectangle. If it is an apple, it is $1$; otherwise, it is $0$.

Next, we design a function $dfs(i, j, k)$, which represents the number of ways to cut the rectangle $(i, j, m-1, n-1)$ with $k$ cuts to get $k+1$ pieces of pizza. Here, $(i, j)$ and $(m-1, n-1)$ are the coordinates of the top-left and bottom-right corners of the rectangle, respectively. The calculation method of the function $dfs(i, j, k)$ is as follows:

- If $k = 0$, it means no more cuts can be made. We need to check if there are any apples in the rectangle. If there are apples, return $1$; otherwise, return $0$.
- If $k \gt 0$, we need to enumerate the position of the last cut. If the last cut is horizontal, we need to enumerate the cutting position $x$, where $i \lt x \lt m$. If $s[x][n] - s[i][n] - s[x][j] + s[i][j] \gt 0$, it means there are apples in the upper piece of pizza, and we add the value of $dfs(x, j, k-1)$ to the answer. If the last cut is vertical, we need to enumerate the cutting position $y$, where $j \lt y \lt n$. If $s[m][y] - s[i][y] - s[m][j] + s[i][j] \gt 0$, it means there are apples in the left piece of pizza, and we add the value of $dfs(i, y, k-1)$ to the answer.

The final answer is the value of $dfs(0, 0, k-1)$.

To avoid repeated calculations, we can use memoized search. We use a 3D array $f$ to record the value of $dfs(i, j, k)$. When we need to calculate the value of $dfs(i, j, k)$, if $f[i][j][k]$ is not $-1$, it means we have already calculated it before, and we can directly return $f[i][j][k]$. Otherwise, we calculate the value of $dfs(i, j, k)$ according to the above method and save the result in $f[i][j][k]$.

The time complexity is $O(m \times n \times k \times (m + n))$, and the space complexity is $O(m \times n \times k)$. Here, $m$ and $n$ are the number of rows and columns of the rectangle, respectively.

Similar problems:

- [2312. Selling Pieces of Wood](https://github.com/doocs/leetcode/blob/main/solution/2300-2399/2312.Selling%20Pieces%20of%20Wood/README_EN.md)

<!-- tabs:start -->

Expand Down
6 changes: 3 additions & 3 deletions solution/1400-1499/1446.Consecutive Characters/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -57,11 +57,11 @@ tags:

### 方法一:遍历计数

我们定义一个变量 $t$,表示当前连续字符的长度,初始时 $t=1$。
我们定义一个变量 $\textit{t}$,表示当前连续字符的长度,初始时 $\textit{t}=1$。

接下来,我们从字符串 $s$ 的第二个字符开始遍历,如果当前字符与上一个字符相同,那么 $t = t + 1$,然后更新答案 $ans = \max(ans, t)$;否则,$t = 1$。
接下来,我们从字符串 $s$ 的第二个字符开始遍历,如果当前字符与上一个字符相同,那么 $\textit{t} = \textit{t} + 1$,然后更新答案 $\textit{ans} = \max(\textit{ans}, \textit{t})$;否则 $\textit{t} = 1$。

最后返回答案 $ans$ 即可。
最后返回答案 $\textit{ans}$ 即可。

时间复杂度 $O(n)$,其中 $n$ 是字符串 $s$ 的长度。空间复杂度 $O(1)$。

Expand Down
10 changes: 9 additions & 1 deletion solution/1400-1499/1446.Consecutive Characters/README_EN.md
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,15 @@ tags:

<!-- solution:start -->

### Solution 1
### Solution 1: Traversal and Counting

We define a variable $\textit{t}$ to represent the length of the current consecutive characters, initially $\textit{t}=1$.

Next, we traverse the string $s$ starting from the second character. If the current character is the same as the previous character, then $\textit{t} = \textit{t} + 1$, and update the answer $\textit{ans} = \max(\textit{ans}, \textit{t})$; otherwise, set $\textit{t} = 1$.

Finally, return the answer $\textit{ans}$.

The time complexity is $O(n)$, where $n$ is the length of the string $s$. The space complexity is $O(1)$.

<!-- tabs:start -->

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@ comments: true
difficulty: 中等
edit_url: https://github.com/doocs/leetcode/edit/main/solution/1800-1899/1820.Maximum%20Number%20of%20Accepted%20Invitations/README.md
tags:
- 图
- 数组
- 回溯
- 矩阵
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@ comments: true
difficulty: Medium
edit_url: https://github.com/doocs/leetcode/edit/main/solution/1800-1899/1820.Maximum%20Number%20of%20Accepted%20Invitations/README_EN.md
tags:
- Graph
- Array
- Backtracking
- Matrix
Expand Down
Loading
Loading