-In the case of the above model, we want to define $\beta C_{i,j}$ so that the model has a specified valued of $R_0$. If the entry of the contact matrix $C[i,j]$ represents the contacts of population $i$ with $j$, it is equivalent to `contact_data$matrix[i,j]`, and the maximum eigenvalue of this matrix represents the typical magnitude of contacts, not typical magnitude of transmission. We must therefore normalise the matrix $C$ so the maximum eigenvalue is one; we call this matrix $C_normalised$. Because the rate of recovery is $\gamma$, individuals will be infectious on average for $1/\gamma$ days. So $\beta$ as a model input is calculated from $R_0$, the scaling factor and the value of $\gamma$ (i.e. mathematically we use the fact that the dominant eigenvalue of the matrix $R_0 \times C_{normalised}$ is equal to $\beta / \gamma$).
0 commit comments