@@ -178,20 +178,20 @@ def prepare_one_row(
178
178
rank , rep = get_rank (por_x )
179
179
wl = get_ranksum (rank [:n ], rep [:n ])
180
180
wr = get_ranksum (rank [n :], rep [n :])
181
- ml = np .median (por_x [:n ])
182
- mr = np .median (por_x [n :])
181
+ ml = np .float64 ( np . median (por_x [:n ]) )
182
+ mr = np .float64 ( np . median (por_x [n :]) )
183
183
184
184
return wl , wr , ml , mr
185
185
186
186
187
- def unibench (ub_x : NDArray [np .float64 ], alpha : float ) -> np .float64 | None :
187
+ def unibench (ub_x : NDArray [np .float64 ], alpha : float ) -> np .float64 :
188
188
wl , _ , ml , mr = prepare_one_row (ub_x )
189
189
target = float (wl )
190
190
191
191
rst_lower , rst_upper = ranksum_table (len (ub_x ) // 2 , alpha )
192
192
if target <= rst_lower or target >= rst_upper :
193
193
return np .subtract (ml , mr )
194
- return None
194
+ return np . float64 ( np . nan )
195
195
196
196
197
197
def crossbench (cb_x : NDArray [np .float64 ]) -> tuple [float , float , float ]:
@@ -230,7 +230,7 @@ def hpt_basic(
230
230
meddiff = np .zeros ((len (mtx_a ),), float )
231
231
232
232
for i , bm in enumerate (mtx_a .keys ()):
233
- hpt_x = np .hstack ((multi * mtx_a [bm ], mtx_b [bm ]))
233
+ hpt_x = np .hstack ((multi * mtx_a [bm ], mtx_b [bm ]), dtype = np . float64 )
234
234
meddiff [i ] = unibench (hpt_x , alpha )
235
235
236
236
return crossbench (meddiff )
0 commit comments