@@ -18,7 +18,7 @@ This subroutine evaluates the potential
18
18
19
19
.. math::
20
20
21
- u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
21
+ u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi \|x-x_{j}\|}
22
22
23
23
at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
24
24
@@ -57,7 +57,7 @@ This subroutine evaluates the potential
57
57
58
58
.. math::
59
59
60
- u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
60
+ u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi \|x-x_{j}\|}
61
61
62
62
at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
63
63
@@ -106,7 +106,7 @@ This subroutine evaluates the potential and its gradient
106
106
107
107
.. math::
108
108
109
- u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
109
+ u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi \|x-x_{j}\|}
110
110
111
111
at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
112
112
@@ -147,7 +147,7 @@ This subroutine evaluates the potential and its gradient
147
147
148
148
.. math::
149
149
150
- u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
150
+ u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi \|x-x_{j}\|}
151
151
152
152
at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
153
153
@@ -198,7 +198,7 @@ This subroutine evaluates the potential
198
198
199
199
.. math::
200
200
201
- u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
201
+ u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi \|x-x_{j}\|}\right)
202
202
203
203
at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
204
204
@@ -237,7 +237,7 @@ This subroutine evaluates the potential
237
237
238
238
.. math::
239
239
240
- u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
240
+ u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi \|x-x_{j}\|}\right)
241
241
242
242
at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
243
243
@@ -286,7 +286,7 @@ This subroutine evaluates the potential and its gradient
286
286
287
287
.. math::
288
288
289
- u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
289
+ u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi \|x-x_{j}\|}\right)
290
290
291
291
at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
292
292
@@ -327,7 +327,7 @@ This subroutine evaluates the potential and its gradient
327
327
328
328
.. math::
329
329
330
- u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
330
+ u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi \|x-x_{j}\|}\right)
331
331
332
332
at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
333
333
@@ -378,7 +378,7 @@ This subroutine evaluates the potential
378
378
379
379
.. math::
380
380
381
- u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\ |x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
381
+ u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\ |x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi \|x-x_{j}\|}\right)
382
382
383
383
at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
384
384
@@ -419,7 +419,7 @@ This subroutine evaluates the potential
419
419
420
420
.. math::
421
421
422
- u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\ |x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
422
+ u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\ |x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi \|x-x_{j}\|}\right)
423
423
424
424
at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
425
425
@@ -470,7 +470,7 @@ This subroutine evaluates the potential and its gradient
470
470
471
471
.. math::
472
472
473
- u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\ |x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
473
+ u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\ |x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi \|x-x_{j}\|}\right)
474
474
475
475
at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
476
476
@@ -513,7 +513,7 @@ This subroutine evaluates the potential and its gradient
513
513
514
514
.. math::
515
515
516
- u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\ |x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
516
+ u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\ |x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi \|x-x_{j}\|}\right)
517
517
518
518
at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
519
519
@@ -566,7 +566,7 @@ This subroutine evaluates the potential
566
566
567
567
.. math::
568
568
569
- u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
569
+ u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi \|x-x_{j}\|}
570
570
571
571
at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
572
572
@@ -609,7 +609,7 @@ This subroutine evaluates the potential
609
609
610
610
.. math::
611
611
612
- u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
612
+ u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi \|x-x_{j}\|}
613
613
614
614
at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
615
615
@@ -658,7 +658,7 @@ This subroutine evaluates the potential and its gradient
658
658
659
659
.. math::
660
660
661
- u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
661
+ u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi \|x-x_{j}\|}
662
662
663
663
at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
664
664
@@ -703,7 +703,7 @@ This subroutine evaluates the potential and its gradient
703
703
704
704
.. math::
705
705
706
- u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
706
+ u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi \|x-x_{j}\|}
707
707
708
708
at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
709
709
@@ -754,7 +754,7 @@ This subroutine evaluates the potential
754
754
755
755
.. math::
756
756
757
- u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
757
+ u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi \|x-x_{j}\|}\right)
758
758
759
759
at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
760
760
@@ -797,7 +797,7 @@ This subroutine evaluates the potential
797
797
798
798
.. math::
799
799
800
- u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
800
+ u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi \|x-x_{j}\|}\right)
801
801
802
802
at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
803
803
@@ -846,7 +846,7 @@ This subroutine evaluates the potential and its gradient
846
846
847
847
.. math::
848
848
849
- u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
849
+ u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi \|x-x_{j}\|}\right)
850
850
851
851
at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
852
852
@@ -891,7 +891,7 @@ This subroutine evaluates the potential and its gradient
891
891
892
892
.. math::
893
893
894
- u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
894
+ u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi \|x-x_{j}\|}\right)
895
895
896
896
at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
897
897
@@ -942,7 +942,7 @@ This subroutine evaluates the potential
942
942
943
943
.. math::
944
944
945
- u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\ |x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
945
+ u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\ |x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi \|x-x_{j}\|}\right)
946
946
947
947
at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
948
948
@@ -987,7 +987,7 @@ This subroutine evaluates the potential
987
987
988
988
.. math::
989
989
990
- u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\ |x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
990
+ u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\ |x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi \|x-x_{j}\|}\right)
991
991
992
992
at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
993
993
@@ -1038,7 +1038,7 @@ This subroutine evaluates the potential and its gradient
1038
1038
1039
1039
.. math::
1040
1040
1041
- u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\ |x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
1041
+ u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\ |x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi \|x-x_{j}\|}\right)
1042
1042
1043
1043
at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
1044
1044
@@ -1085,7 +1085,7 @@ This subroutine evaluates the potential and its gradient
1085
1085
1086
1086
.. math::
1087
1087
1088
- u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\ |x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
1088
+ u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\ |x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi \|x-x_{j}\|}\right)
1089
1089
1090
1090
at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
1091
1091
@@ -1138,7 +1138,7 @@ This subroutine evaluates the potential
1138
1138
1139
1139
.. math::
1140
1140
1141
- u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
1141
+ u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi \|x-x_{j}\|}
1142
1142
1143
1143
at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
1144
1144
@@ -1183,7 +1183,7 @@ This subroutine evaluates the potential
1183
1183
1184
1184
.. math::
1185
1185
1186
- u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
1186
+ u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi \|x-x_{j}\|}
1187
1187
1188
1188
at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
1189
1189
@@ -1234,7 +1234,7 @@ This subroutine evaluates the potential and its gradient
1234
1234
1235
1235
.. math::
1236
1236
1237
- u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
1237
+ u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi \|x-x_{j}\|}
1238
1238
1239
1239
at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
1240
1240
@@ -1283,7 +1283,7 @@ This subroutine evaluates the potential and its gradient
1283
1283
1284
1284
.. math::
1285
1285
1286
- u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
1286
+ u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi \|x-x_{j}\|}
1287
1287
1288
1288
at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
1289
1289
@@ -1338,7 +1338,7 @@ This subroutine evaluates the potential
1338
1338
1339
1339
.. math::
1340
1340
1341
- u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
1341
+ u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi \|x-x_{j}\|}\right)
1342
1342
1343
1343
at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
1344
1344
@@ -1383,7 +1383,7 @@ This subroutine evaluates the potential
1383
1383
1384
1384
.. math::
1385
1385
1386
- u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
1386
+ u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi \|x-x_{j}\|}\right)
1387
1387
1388
1388
at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
1389
1389
@@ -1434,7 +1434,7 @@ This subroutine evaluates the potential and its gradient
1434
1434
1435
1435
.. math::
1436
1436
1437
- u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
1437
+ u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi \|x-x_{j}\|}\right)
1438
1438
1439
1439
at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
1440
1440
@@ -1483,7 +1483,7 @@ This subroutine evaluates the potential and its gradient
1483
1483
1484
1484
.. math::
1485
1485
1486
- u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
1486
+ u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi \|x-x_{j}\|}\right)
1487
1487
1488
1488
at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
1489
1489
@@ -1538,7 +1538,7 @@ This subroutine evaluates the potential
1538
1538
1539
1539
.. math::
1540
1540
1541
- u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\ |x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
1541
+ u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\ |x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi \|x-x_{j}\|}\right)
1542
1542
1543
1543
at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
1544
1544
@@ -1585,7 +1585,7 @@ This subroutine evaluates the potential
1585
1585
1586
1586
.. math::
1587
1587
1588
- u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\ |x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
1588
+ u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\ |x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi \|x-x_{j}\|}\right)
1589
1589
1590
1590
at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
1591
1591
@@ -1638,7 +1638,7 @@ This subroutine evaluates the potential and its gradient
1638
1638
1639
1639
.. math::
1640
1640
1641
- u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\ |x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
1641
+ u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\ |x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi \|x-x_{j}\|}\right)
1642
1642
1643
1643
at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
1644
1644
@@ -1689,7 +1689,7 @@ This subroutine evaluates the potential and its gradient
1689
1689
1690
1690
.. math::
1691
1691
1692
- u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\ |x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
1692
+ u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\ |x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi \|x-x_{j}\|}\right)
1693
1693
1694
1694
at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
1695
1695
0 commit comments