Skip to content

Commit 3766fef

Browse files
authored
Merge pull request #62 from flatironinstitute/4pi
1/4pi factor
2 parents dabaead + ede2e0d commit 3766fef

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

54 files changed

+824
-766
lines changed

docs/fortran-c.rst

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ gradient
2020

2121
.. math::
2222
23-
u(x) = \sum_{j=1}^{N} \frac{c_{j}}{\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{1}{\|x-x_{j}\|} \right) \, .
23+
u(x) = \sum_{j=1}^{N} \frac{c_{j}}{4\pi\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{1}{4\pi\|x-x_{j}\|} \right) \, .
2424
2525
Here $x_{j}$ are the source locations, $c_{j}$ are the
2626
charge strengths and $v_{j}$ are the dipole strengths,
@@ -52,7 +52,7 @@ In general, the subroutine names take the following form::
5252
- t: Evaluate $u$ and its gradient at $t_{i}$, a collection of target locations specified by the user.
5353
- st: Evaluate $u$ and its gradient at both source and target locations $x_{i}$ and $t_{i}$.
5454

55-
- <int-ker>: kernel of interaction (charges/dipoles/both). The charge interactions are given by $c_{j}/\|x-x_{j}\| $, and the dipole interactions are given by $-v_{j} \cdot \nabla (1/\|x-x_{j}\|)$
55+
- <int-ker>: kernel of interaction (charges/dipoles/both). The charge interactions are given by $c_{j}/4\pi\|x-x_{j}\| $, and the dipole interactions are given by $-v_{j} \cdot \nabla (1/4\pi\|x-x_{j}\|)$
5656

5757
- c: charges
5858
- d: dipoles
@@ -175,7 +175,7 @@ gradient
175175

176176
.. math::
177177
178-
u(x) = \sum_{j=1}^{N} \frac{c_{j} e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|} \right) \, .
178+
u(x) = \sum_{j=1}^{N} \frac{c_{j} e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|} \right) \, .
179179
180180
Here $x_{j}$ are the source locations, $c_{j}$ are the
181181
charge strengths and $v_{j}$ are the dipole strengths,
@@ -207,7 +207,7 @@ In general, the subroutine names take the following form::
207207
- t: Evaluate $u$ and its gradient at $t_{i}$, a collection of target locations specified by the user.
208208
- st: Evaluate $u$ and its gradient at both source and target locations $x_{i}$ and $t_{i}$.
209209

210-
- <int-ker>: kernel of interaction (charges/dipoles/both). The charge interactions are given by $c_{j}/\|x-x_{j}\| $, and the dipole interactions are given by $-v_{j} \cdot \nabla (1/\|x-x_{j}\|)$
210+
- <int-ker>: kernel of interaction (charges/dipoles/both). The charge interactions are given by $c_{j}/4\pi\|x-x_{j}\| $, and the dipole interactions are given by $-v_{j} \cdot \nabla (1/4\pi\|x-x_{j}\|)$
211211

212212
- c: charges
213213
- d: dipoles
@@ -320,7 +320,7 @@ denote the Stokeslet given by
320320

321321

322322
.. math::
323-
\mathcal{G}^{\textrm{stok}}(x,y)=\frac{1}{2 \|x-y\|^3}
323+
\mathcal{G}^{\textrm{stok}}(x,y)=\frac{1}{8\pi \|x-y\|^3}
324324
\begin{bmatrix}
325325
(x_{1}-y_{1})^2 + \|x-y \|^2 & (x_{1}-y_{1})(x_{2}-y_{2}) &
326326
(x_{1}-y_{1})(x_{3}-y_{3}) \\
@@ -335,7 +335,7 @@ a vector $v$ is given by
335335

336336
.. math::
337337
v\cdot \mathcal{T}^{\textrm{stok}}(x,y) =
338-
\frac{3 v \cdot (x-y)}{\|x-y \|^5}
338+
\frac{3 v \cdot (x-y)}{4\pi\|x-y \|^5}
339339
\begin{bmatrix}
340340
(x_{1}-y_{1})^2 & (x_{1}-y_{1})(x_{2}-y_{2}) &
341341
(x_{1}-y_{1})(x_{3}-y_{3}) \\
@@ -451,7 +451,7 @@ divergence
451451

452452
.. math::
453453
454-
E(x) = \sum_{j=1}^{N} \nabla \times \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|} M_{j} + \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|} J_{j} + \nabla \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|} \rho_{j} \, .
454+
E(x) = \sum_{j=1}^{N} \nabla \times \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|} M_{j} + \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|} J_{j} + \nabla \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|} \rho_{j} \, .
455455
456456
Here $x_{j}$ are the source locations,
457457
$M_{j}$ are the magnetic current densities,

docs/fortrandocs_helm.raw

Lines changed: 36 additions & 36 deletions
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ This subroutine evaluates the potential
1818

1919
.. math::
2020

21-
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
21+
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}
2222

2323
at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
2424

@@ -57,7 +57,7 @@ This subroutine evaluates the potential
5757

5858
.. math::
5959

60-
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
60+
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}
6161

6262
at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
6363

@@ -106,7 +106,7 @@ This subroutine evaluates the potential and its gradient
106106

107107
.. math::
108108

109-
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
109+
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}
110110

111111
at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
112112

@@ -147,7 +147,7 @@ This subroutine evaluates the potential and its gradient
147147

148148
.. math::
149149

150-
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
150+
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}
151151

152152
at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
153153

@@ -198,7 +198,7 @@ This subroutine evaluates the potential
198198

199199
.. math::
200200

201-
u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
201+
u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)
202202

203203
at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
204204

@@ -237,7 +237,7 @@ This subroutine evaluates the potential
237237

238238
.. math::
239239

240-
u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
240+
u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)
241241

242242
at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
243243

@@ -286,7 +286,7 @@ This subroutine evaluates the potential and its gradient
286286

287287
.. math::
288288

289-
u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
289+
u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)
290290

291291
at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
292292

@@ -327,7 +327,7 @@ This subroutine evaluates the potential and its gradient
327327

328328
.. math::
329329

330-
u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
330+
u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)
331331

332332
at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
333333

@@ -378,7 +378,7 @@ This subroutine evaluates the potential
378378

379379
.. math::
380380

381-
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
381+
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)
382382

383383
at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
384384

@@ -419,7 +419,7 @@ This subroutine evaluates the potential
419419

420420
.. math::
421421

422-
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
422+
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)
423423

424424
at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
425425

@@ -470,7 +470,7 @@ This subroutine evaluates the potential and its gradient
470470

471471
.. math::
472472

473-
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
473+
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)
474474

475475
at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
476476

@@ -513,7 +513,7 @@ This subroutine evaluates the potential and its gradient
513513

514514
.. math::
515515

516-
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
516+
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)
517517

518518
at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
519519

@@ -566,7 +566,7 @@ This subroutine evaluates the potential
566566

567567
.. math::
568568

569-
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
569+
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}
570570

571571
at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
572572

@@ -609,7 +609,7 @@ This subroutine evaluates the potential
609609

610610
.. math::
611611

612-
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
612+
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}
613613

614614
at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
615615

@@ -658,7 +658,7 @@ This subroutine evaluates the potential and its gradient
658658

659659
.. math::
660660

661-
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
661+
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}
662662

663663
at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
664664

@@ -703,7 +703,7 @@ This subroutine evaluates the potential and its gradient
703703

704704
.. math::
705705

706-
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
706+
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}
707707

708708
at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
709709

@@ -754,7 +754,7 @@ This subroutine evaluates the potential
754754

755755
.. math::
756756

757-
u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
757+
u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)
758758

759759
at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
760760

@@ -797,7 +797,7 @@ This subroutine evaluates the potential
797797

798798
.. math::
799799

800-
u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
800+
u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)
801801

802802
at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
803803

@@ -846,7 +846,7 @@ This subroutine evaluates the potential and its gradient
846846

847847
.. math::
848848

849-
u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
849+
u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)
850850

851851
at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
852852

@@ -891,7 +891,7 @@ This subroutine evaluates the potential and its gradient
891891

892892
.. math::
893893

894-
u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
894+
u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)
895895

896896
at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
897897

@@ -942,7 +942,7 @@ This subroutine evaluates the potential
942942

943943
.. math::
944944

945-
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
945+
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)
946946

947947
at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
948948

@@ -987,7 +987,7 @@ This subroutine evaluates the potential
987987

988988
.. math::
989989

990-
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
990+
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)
991991

992992
at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
993993

@@ -1038,7 +1038,7 @@ This subroutine evaluates the potential and its gradient
10381038

10391039
.. math::
10401040

1041-
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
1041+
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)
10421042

10431043
at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
10441044

@@ -1085,7 +1085,7 @@ This subroutine evaluates the potential and its gradient
10851085

10861086
.. math::
10871087

1088-
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
1088+
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)
10891089

10901090
at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
10911091

@@ -1138,7 +1138,7 @@ This subroutine evaluates the potential
11381138

11391139
.. math::
11401140

1141-
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
1141+
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}
11421142

11431143
at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
11441144

@@ -1183,7 +1183,7 @@ This subroutine evaluates the potential
11831183

11841184
.. math::
11851185

1186-
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
1186+
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}
11871187

11881188
at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
11891189

@@ -1234,7 +1234,7 @@ This subroutine evaluates the potential and its gradient
12341234

12351235
.. math::
12361236

1237-
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
1237+
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}
12381238

12391239
at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
12401240

@@ -1283,7 +1283,7 @@ This subroutine evaluates the potential and its gradient
12831283

12841284
.. math::
12851285

1286-
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
1286+
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}
12871287

12881288
at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
12891289

@@ -1338,7 +1338,7 @@ This subroutine evaluates the potential
13381338

13391339
.. math::
13401340

1341-
u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
1341+
u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)
13421342

13431343
at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
13441344

@@ -1383,7 +1383,7 @@ This subroutine evaluates the potential
13831383

13841384
.. math::
13851385

1386-
u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
1386+
u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)
13871387

13881388
at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
13891389

@@ -1434,7 +1434,7 @@ This subroutine evaluates the potential and its gradient
14341434

14351435
.. math::
14361436

1437-
u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
1437+
u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)
14381438

14391439
at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
14401440

@@ -1483,7 +1483,7 @@ This subroutine evaluates the potential and its gradient
14831483

14841484
.. math::
14851485

1486-
u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
1486+
u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)
14871487

14881488
at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
14891489

@@ -1538,7 +1538,7 @@ This subroutine evaluates the potential
15381538

15391539
.. math::
15401540

1541-
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
1541+
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)
15421542

15431543
at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
15441544

@@ -1585,7 +1585,7 @@ This subroutine evaluates the potential
15851585

15861586
.. math::
15871587

1588-
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
1588+
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)
15891589

15901590
at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
15911591

@@ -1638,7 +1638,7 @@ This subroutine evaluates the potential and its gradient
16381638

16391639
.. math::
16401640

1641-
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
1641+
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)
16421642

16431643
at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
16441644

@@ -1689,7 +1689,7 @@ This subroutine evaluates the potential and its gradient
16891689

16901690
.. math::
16911691

1692-
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
1692+
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)
16931693

16941694
at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.
16951695

0 commit comments

Comments
 (0)