|
| 1 | +# Copyright The FMS HF Tuning Authors |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +# SPDX-License-Identifier: Apache-2.0 |
| 16 | +# https://spdx.dev/learn/handling-license-info/ |
| 17 | + |
| 18 | +# Standard |
| 19 | +import base64 |
| 20 | +import os |
| 21 | +import pickle |
| 22 | + |
| 23 | +# Third Party |
| 24 | +import pytest |
| 25 | +from peft import LoraConfig, PromptTuningConfig |
| 26 | + |
| 27 | + |
| 28 | +# Local |
| 29 | +from tuning.utils import config_utils |
| 30 | +from tuning.config import peft_config |
| 31 | +from tests.build.test_utils import HAPPY_PATH_DUMMY_CONFIG_PATH |
| 32 | + |
| 33 | +def test_get_hf_peft_config_returns_None_for_FT(): |
| 34 | + expected_config = None |
| 35 | + assert expected_config == config_utils.get_hf_peft_config("", None, "") |
| 36 | + |
| 37 | +def test_get_hf_peft_config_returns_Lora_config_correctly(): |
| 38 | + # Test that when a value is not defined, the default values are used |
| 39 | + # Default values: r=8, lora_alpha=32, lora_dropout=0.05, target_modules=["q_proj", "v_proj"] |
| 40 | + tuning_config = peft_config.LoraConfig(r=3, lora_alpha=3) |
| 41 | + |
| 42 | + config = config_utils.get_hf_peft_config("CAUSAL_LM", tuning_config, "") |
| 43 | + assert isinstance(config, LoraConfig) |
| 44 | + assert config.task_type == "CAUSAL_LM" |
| 45 | + assert config.r == 3 |
| 46 | + assert config.lora_alpha == 3 |
| 47 | + assert config.lora_dropout == 0.05 # default value from peft_config.LoraConfig |
| 48 | + assert config.target_modules == {'q_proj', 'v_proj'} # default value from peft_config.LoraConfig |
| 49 | + |
| 50 | + # Test that when target_modules is ["all-linear"], we convert it to str type "all-linear" |
| 51 | + tuning_config = peft_config.LoraConfig(r=234, target_modules=["all-linear"]) |
| 52 | + |
| 53 | + config = config_utils.get_hf_peft_config("CAUSAL_LM", tuning_config, "") |
| 54 | + assert isinstance(config, LoraConfig) |
| 55 | + assert config.r == 234 |
| 56 | + assert config.target_modules == "all-linear" |
| 57 | + assert config.lora_dropout == 0.05 # default value from peft_config.LoraConfig |
| 58 | + |
| 59 | +def test_get_hf_peft_config_returns_PT_config_correctly(): |
| 60 | + # Test that the prompt tuning config is set properly for each field |
| 61 | + # when a value is not defined, the default values are used |
| 62 | + # Default values: |
| 63 | + # prompt_tuning_init="TEXT", |
| 64 | + # prompt_tuning_init_text="Classify if the tweet is a complaint or not:" |
| 65 | + tuning_config = peft_config.PromptTuningConfig(num_virtual_tokens=12) |
| 66 | + |
| 67 | + config = config_utils.get_hf_peft_config("CAUSAL_LM", tuning_config, "foo/bar/path") |
| 68 | + assert isinstance(config, PromptTuningConfig) |
| 69 | + assert config.task_type == "CAUSAL_LM" |
| 70 | + assert config.prompt_tuning_init == "TEXT" |
| 71 | + assert config.num_virtual_tokens == 12 |
| 72 | + assert config.prompt_tuning_init_text == "Classify if the tweet is a complaint or not:" |
| 73 | + assert config.tokenizer_name_or_path == "foo/bar/path" |
| 74 | + |
| 75 | + # Test that tokenizer path is allowed to be None only when prompt_tuning_init is not TEXT |
| 76 | + tuning_config = peft_config.PromptTuningConfig(prompt_tuning_init="RANDOM") |
| 77 | + config = config_utils.get_hf_peft_config(None, tuning_config, None) |
| 78 | + assert isinstance(config, PromptTuningConfig) |
| 79 | + assert config.tokenizer_name_or_path is None |
| 80 | + |
| 81 | + tuning_config = peft_config.PromptTuningConfig(prompt_tuning_init="TEXT") |
| 82 | + with pytest.raises(ValueError) as err: |
| 83 | + config_utils.get_hf_peft_config(None, tuning_config, None) |
| 84 | + assert "tokenizer_name_or_path can't be None" in err.value |
| 85 | + |
| 86 | + |
| 87 | +def test_create_tuning_config(): |
| 88 | + # Test that LoraConfig is created for peft_method Lora |
| 89 | + # and fields are set properly |
| 90 | + tune_config = config_utils.create_tuning_config("lora", foo= "x", r= 234) |
| 91 | + assert isinstance(tune_config, peft_config.LoraConfig) |
| 92 | + assert tune_config.r == 234 |
| 93 | + assert tune_config.lora_alpha == 32 |
| 94 | + assert tune_config.lora_dropout == 0.05 |
| 95 | + |
| 96 | + # Test that PromptTuningConfig is created for peft_method pt |
| 97 | + # and fields are set properly |
| 98 | + tune_config = config_utils.create_tuning_config("pt", foo= "x", prompt_tuning_init= "RANDOM") |
| 99 | + assert isinstance(tune_config, peft_config.PromptTuningConfig) |
| 100 | + assert tune_config.prompt_tuning_init == "RANDOM" |
| 101 | + |
| 102 | + # Test that None is created for peft_method "None" or None |
| 103 | + # and fields are set properly |
| 104 | + tune_config = config_utils.create_tuning_config("None", foo= "x") |
| 105 | + assert tune_config is None |
| 106 | + |
| 107 | + tune_config = config_utils.create_tuning_config(None, foo= "x") |
| 108 | + assert tune_config is None |
| 109 | + |
| 110 | + # Test that this function does not recognize any other peft_method |
| 111 | + with pytest.raises(AssertionError) as err: |
| 112 | + tune_config = config_utils.create_tuning_config("hello", foo = "x") |
| 113 | + assert err.value == "peft config hello not defined in peft.py" |
| 114 | + |
| 115 | +def test_update_config_can_handle_dot_for_nested_field(): |
| 116 | + # Test update_config allows nested field |
| 117 | + config = peft_config.LoraConfig(r = 5) |
| 118 | + assert config.lora_alpha == 32 # default value is 32 |
| 119 | + |
| 120 | + # update lora_alpha to 98 |
| 121 | + kwargs = {'LoraConfig.lora_alpha': 98} |
| 122 | + config_utils.update_config(config, **kwargs) |
| 123 | + assert config.lora_alpha == 98 |
| 124 | + |
| 125 | + # update an unknown field |
| 126 | + kwargs = {'LoraConfig.foobar': 98} |
| 127 | + config_utils.update_config(config, **kwargs) # nothing happens |
| 128 | + |
| 129 | +def test_update_config_can_handle_multiple_config_updates(): |
| 130 | + # update a tuple of configs |
| 131 | + config = (peft_config.LoraConfig(r = 5), peft_config.LoraConfig(r = 7)) |
| 132 | + kwargs = {'r': 98} |
| 133 | + config_utils.update_config(config, **kwargs) |
| 134 | + assert config[0].r == 98 |
| 135 | + assert config[1].r == 98 |
| 136 | + |
| 137 | +def test_get_json_config_can_load_from_path_or_envvar(): |
| 138 | + # Load from path |
| 139 | + if "SFT_TRAINER_CONFIG_JSON_ENV_VAR" in os.environ: |
| 140 | + del os.environ['SFT_TRAINER_CONFIG_JSON_ENV_VAR'] |
| 141 | + os.environ["SFT_TRAINER_CONFIG_JSON_PATH"] = HAPPY_PATH_DUMMY_CONFIG_PATH |
| 142 | + |
| 143 | + job_config = config_utils.get_json_config() |
| 144 | + assert job_config is not None |
| 145 | + assert job_config["model_name_or_path"] == "bigscience/bloom-560m" |
| 146 | + |
| 147 | + # Load from envvar |
| 148 | + config_json = {'model_name_or_path': 'foobar'} |
| 149 | + message_bytes = pickle.dumps(config_json) |
| 150 | + base64_bytes = base64.b64encode(message_bytes) |
| 151 | + encoded_json = base64_bytes.decode("ascii") |
| 152 | + os.environ["SFT_TRAINER_CONFIG_JSON_ENV_VAR"] = encoded_json |
| 153 | + |
| 154 | + job_config = config_utils.get_json_config() |
| 155 | + assert job_config is not None |
| 156 | + assert job_config["model_name_or_path"] == "foobar" |
0 commit comments