|
| 1 | +# Copyright The FMS HF Tuning Authors |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +# SPDX-License-Identifier: Apache-2.0 |
| 16 | +# https://spdx.dev/learn/handling-license-info/ |
| 17 | + |
| 18 | +# Standard |
| 19 | +import base64 |
| 20 | +import os |
| 21 | +import pickle |
| 22 | + |
| 23 | +# Third Party |
| 24 | +from peft import LoraConfig, PromptTuningConfig |
| 25 | +import pytest |
| 26 | + |
| 27 | +# First Party |
| 28 | +from tests.build.test_utils import HAPPY_PATH_DUMMY_CONFIG_PATH |
| 29 | + |
| 30 | +# Local |
| 31 | +from tuning.config import peft_config |
| 32 | +from tuning.utils import config_utils |
| 33 | + |
| 34 | + |
| 35 | +def test_get_hf_peft_config_returns_None_for_tuning_config_None(): |
| 36 | + """Test that when tuning_config is None, the function returns None""" |
| 37 | + expected_config = None |
| 38 | + assert expected_config == config_utils.get_hf_peft_config("", None, "") |
| 39 | + |
| 40 | + |
| 41 | +def test_get_hf_peft_config_returns_lora_config_correctly(): |
| 42 | + """Test that tuning_config fields are passed to LoraConfig correctly, |
| 43 | + If not defined, the default values are used |
| 44 | + """ |
| 45 | + tuning_config = peft_config.LoraConfig(r=3, lora_alpha=3) |
| 46 | + |
| 47 | + config = config_utils.get_hf_peft_config("CAUSAL_LM", tuning_config, "") |
| 48 | + assert isinstance(config, LoraConfig) |
| 49 | + assert config.task_type == "CAUSAL_LM" |
| 50 | + assert config.r == 3 |
| 51 | + assert config.lora_alpha == 3 |
| 52 | + assert ( |
| 53 | + config.lora_dropout == 0.05 |
| 54 | + ) # default value from local peft_config.LoraConfig |
| 55 | + assert config.target_modules == { |
| 56 | + "q_proj", |
| 57 | + "v_proj", |
| 58 | + } # default value from local peft_config.LoraConfig |
| 59 | + assert config.init_lora_weights is True # default value from HF peft.LoraConfig |
| 60 | + assert ( |
| 61 | + config.megatron_core == "megatron.core" |
| 62 | + ) # default value from HF peft.LoraConfig |
| 63 | + |
| 64 | + |
| 65 | +def test_get_hf_peft_config_ignores_tokenizer_path_for_lora_config(): |
| 66 | + """Test that if tokenizer is given with a LoraConfig, it is ignored""" |
| 67 | + tuning_config = peft_config.LoraConfig(r=3, lora_alpha=3) |
| 68 | + |
| 69 | + config = config_utils.get_hf_peft_config( |
| 70 | + task_type="CAUSAL_LM", |
| 71 | + tuning_config=tuning_config, |
| 72 | + tokenizer_name_or_path="foo/bar/path", |
| 73 | + ) |
| 74 | + assert isinstance(config, LoraConfig) |
| 75 | + assert config.task_type == "CAUSAL_LM" |
| 76 | + assert config.r == 3 |
| 77 | + assert config.lora_alpha == 3 |
| 78 | + assert not hasattr(config, "tokenizer_name_or_path") |
| 79 | + |
| 80 | + |
| 81 | +def test_get_hf_peft_config_returns_lora_config_with_correct_value_for_all_linear(): |
| 82 | + """Test that when target_modules is ["all-linear"], we convert it to str type "all-linear" """ |
| 83 | + tuning_config = peft_config.LoraConfig(r=234, target_modules=["all-linear"]) |
| 84 | + |
| 85 | + config = config_utils.get_hf_peft_config("CAUSAL_LM", tuning_config, "") |
| 86 | + assert isinstance(config, LoraConfig) |
| 87 | + assert config.target_modules == "all-linear" |
| 88 | + |
| 89 | + |
| 90 | +def test_get_hf_peft_config_returns_pt_config_correctly(): |
| 91 | + """Test that the prompt tuning config is set properly for each field |
| 92 | + When a value is not defined, the default values are used |
| 93 | + """ |
| 94 | + tuning_config = peft_config.PromptTuningConfig(num_virtual_tokens=12) |
| 95 | + |
| 96 | + config = config_utils.get_hf_peft_config("CAUSAL_LM", tuning_config, "foo/bar/path") |
| 97 | + assert isinstance(config, PromptTuningConfig) |
| 98 | + assert config.task_type == "CAUSAL_LM" |
| 99 | + assert ( |
| 100 | + config.prompt_tuning_init == "TEXT" |
| 101 | + ) # default value from local peft_config.PromptTuningConfig |
| 102 | + assert config.num_virtual_tokens == 12 |
| 103 | + assert ( |
| 104 | + config.prompt_tuning_init_text == "Classify if the tweet is a complaint or not:" |
| 105 | + ) # default value from local peft_config.PromptTuningConfig |
| 106 | + assert config.tokenizer_name_or_path == "foo/bar/path" |
| 107 | + assert config.num_layers is None # default value from HF peft.PromptTuningConfig |
| 108 | + assert ( |
| 109 | + config.inference_mode is False |
| 110 | + ) # default value from HF peft.PromptTuningConfig |
| 111 | + |
| 112 | + |
| 113 | +def test_get_hf_peft_config_returns_pt_config_with_correct_tokenizer_path(): |
| 114 | + """Test that tokenizer path is allowed to be None only when prompt_tuning_init is not TEXT |
| 115 | + Reference: |
| 116 | + https://github.com/huggingface/peft/blob/main/src/peft/tuners/prompt_tuning/config.py#L73 |
| 117 | + """ |
| 118 | + |
| 119 | + # When prompt_tuning_init is not TEXT, we can pass in None for tokenizer path |
| 120 | + tuning_config = peft_config.PromptTuningConfig(prompt_tuning_init="RANDOM") |
| 121 | + config = config_utils.get_hf_peft_config( |
| 122 | + task_type=None, tuning_config=tuning_config, tokenizer_name_or_path=None |
| 123 | + ) |
| 124 | + assert isinstance(config, PromptTuningConfig) |
| 125 | + assert config.tokenizer_name_or_path is None |
| 126 | + |
| 127 | + # When prompt_tuning_init is TEXT, exception is raised if tokenizer path is None |
| 128 | + tuning_config = peft_config.PromptTuningConfig(prompt_tuning_init="TEXT") |
| 129 | + with pytest.raises(ValueError) as err: |
| 130 | + config_utils.get_hf_peft_config( |
| 131 | + task_type=None, tuning_config=tuning_config, tokenizer_name_or_path=None |
| 132 | + ) |
| 133 | + assert "tokenizer_name_or_path can't be None" in err.value |
| 134 | + |
| 135 | + |
| 136 | +def test_create_tuning_config_for_peft_method_lora(): |
| 137 | + """Test that LoraConfig is created for peft_method Lora |
| 138 | + and fields are set properly. |
| 139 | + If unknown fields are passed, they are ignored |
| 140 | + """ |
| 141 | + tune_config = config_utils.create_tuning_config("lora", foo="x", r=234) |
| 142 | + assert isinstance(tune_config, peft_config.LoraConfig) |
| 143 | + assert tune_config.r == 234 |
| 144 | + assert tune_config.lora_alpha == 32 |
| 145 | + assert tune_config.lora_dropout == 0.05 |
| 146 | + assert not hasattr(tune_config, "foo") |
| 147 | + |
| 148 | + |
| 149 | +def test_create_tuning_config_for_peft_method_pt(): |
| 150 | + """Test that PromptTuningConfig is created for peft_method pt |
| 151 | + and fields are set properly |
| 152 | + """ |
| 153 | + tune_config = config_utils.create_tuning_config( |
| 154 | + "pt", foo="x", prompt_tuning_init="RANDOM" |
| 155 | + ) |
| 156 | + assert isinstance(tune_config, peft_config.PromptTuningConfig) |
| 157 | + assert tune_config.prompt_tuning_init == "RANDOM" |
| 158 | + |
| 159 | + |
| 160 | +def test_create_tuning_config_for_peft_method_none(): |
| 161 | + """Test that PromptTuningConfig is created for peft_method "None" or None""" |
| 162 | + tune_config = config_utils.create_tuning_config("None") |
| 163 | + assert tune_config is None |
| 164 | + |
| 165 | + tune_config = config_utils.create_tuning_config(None) |
| 166 | + assert tune_config is None |
| 167 | + |
| 168 | + |
| 169 | +def test_create_tuning_config_does_not_recognize_any_other_peft_method(): |
| 170 | + """Test that PromptTuningConfig is created for peft_method "None" or None, |
| 171 | + "lora" or "pt", and no other |
| 172 | + """ |
| 173 | + with pytest.raises(AssertionError) as err: |
| 174 | + config_utils.create_tuning_config("hello", foo="x") |
| 175 | + assert err.value == "peft config hello not defined in peft.py" |
| 176 | + |
| 177 | + |
| 178 | +def test_update_config_can_handle_dot_for_nested_field(): |
| 179 | + """Test that the function can read dotted field for kwargs fields""" |
| 180 | + config = peft_config.LoraConfig(r=5) |
| 181 | + assert config.lora_alpha == 32 # default value is 32 |
| 182 | + |
| 183 | + # update lora_alpha to 98 |
| 184 | + kwargs = {"LoraConfig.lora_alpha": 98} |
| 185 | + config_utils.update_config(config, **kwargs) |
| 186 | + assert config.lora_alpha == 98 |
| 187 | + |
| 188 | + |
| 189 | +def test_update_config_does_nothing_for_unknown_field(): |
| 190 | + """Test that the function does not change other config |
| 191 | + field values if a kwarg field is unknown |
| 192 | + """ |
| 193 | + # foobar is an unknown field |
| 194 | + config = peft_config.LoraConfig(r=5) |
| 195 | + kwargs = {"LoraConfig.foobar": 98} |
| 196 | + config_utils.update_config(config, **kwargs) # nothing happens |
| 197 | + assert config.r == 5 # did not change r value |
| 198 | + assert not hasattr(config, "foobar") |
| 199 | + |
| 200 | + |
| 201 | +def test_update_config_can_handle_multiple_config_updates(): |
| 202 | + """Test that the function can handle a tuple of configs""" |
| 203 | + config = (peft_config.LoraConfig(r=5), peft_config.LoraConfig(r=7)) |
| 204 | + kwargs = {"r": 98} |
| 205 | + config_utils.update_config(config, **kwargs) |
| 206 | + assert config[0].r == 98 |
| 207 | + assert config[1].r == 98 |
| 208 | + |
| 209 | + |
| 210 | +def test_get_json_config_can_load_from_path(): |
| 211 | + """Test that the function get_json_config can read |
| 212 | + the json path from env var SFT_TRAINER_CONFIG_JSON_PATH |
| 213 | + """ |
| 214 | + if "SFT_TRAINER_CONFIG_JSON_ENV_VAR" in os.environ: |
| 215 | + del os.environ["SFT_TRAINER_CONFIG_JSON_ENV_VAR"] |
| 216 | + os.environ["SFT_TRAINER_CONFIG_JSON_PATH"] = HAPPY_PATH_DUMMY_CONFIG_PATH |
| 217 | + |
| 218 | + job_config = config_utils.get_json_config() |
| 219 | + assert job_config is not None |
| 220 | + assert job_config["model_name_or_path"] == "bigscience/bloom-560m" |
| 221 | + |
| 222 | + |
| 223 | +def test_get_json_config_can_load_from_envvar(): |
| 224 | + """Test that the function get_json_config can read |
| 225 | + the json path from env var SFT_TRAINER_CONFIG_JSON_ENV_VAR |
| 226 | + """ |
| 227 | + config_json = {"model_name_or_path": "foobar"} |
| 228 | + message_bytes = pickle.dumps(config_json) |
| 229 | + base64_bytes = base64.b64encode(message_bytes) |
| 230 | + encoded_json = base64_bytes.decode("ascii") |
| 231 | + os.environ["SFT_TRAINER_CONFIG_JSON_ENV_VAR"] = encoded_json |
| 232 | + |
| 233 | + job_config = config_utils.get_json_config() |
| 234 | + assert job_config is not None |
| 235 | + assert job_config["model_name_or_path"] == "foobar" |
0 commit comments