A component for semantic search, usually used to look up context for LLMs. Use with an Agent for Retrieval-Augmented Generation (RAG).
- Add Content: Add or replace content with text chunks and embeddings.
- Semantic Search: Vector-based search using configurable embedding models
- Namespaces: Organize content into namespaces for per-user search.
- Custom Filtering: Filter content with custom indexed fields.
- Importance Weighting: Weight content by providing a 0 to 1 "importance".
- Chunk Context: Get surrounding chunks for better context.
- Graceful Migrations: Migrate content or whole namespaces without disruption.
Found a bug? Feature request? File it here.
You'll need an existing Convex project to use the component. Convex is a hosted backend platform, including a database, serverless functions, and a ton more you can learn about here.
Run npm create convex
or follow any of the quickstarts to set one up.
Install the component package:
npm install @convex-dev/memory
Create a convex.config.ts
file in your app's convex/
folder and install the component by calling use
:
// convex/convex.config.ts
import { defineApp } from "convex/server";
import memory from "@convex-dev/memory/convex.config";
const app = defineApp();
app.use(memory);
export default app;
// convex/example.ts
import { components } from "./_generated/api";
import { Memory } from "@convex-dev/memory";
// Any AI SDK model that supports embeddings will work.
import { openai } from "@ai-sdk/openai";
const memory = new Memory<FilterTypes>(components.memory, {
filterNames: ["category", "contentType", "categoryAndType"],
textEmbeddingModel: openai.embedding("text-embedding-3-small"),
embeddingDimension: 1536,
});
// Optional: Add type safety to your filters.
type FilterTypes = {
category: string;
contentType: string;
categoryAndType: { category: string; contentType: string };
};
Add content with text chunks. It will embed the chunks automatically if you don't provide them.
export const add = action({
args: {
url: v.string(),
category: v.string(),
},
handler: async (ctx, args) => {
const { url, category } = args;
const response = await fetch(url);
const content = await response.text();
const chunks = await textSplitter.splitText(content);
const contentType = response.headers.get("content-type");
const { entryId } = await memory.add(ctx, {
namespace: "global", // namespace can be any string
key: url,
chunks,
source: { kind: "url", url },
filterValues: [
{ name: "category", value: category },
{ name: "contentType", value: contentType },
// To get an AND filter, use a filter with a more complex value.
{ name: "categoryAndType", value: { category, contentType } },
],
});
return { entryId };
},
});
Note: The textSplitter
here could be LangChain, Mastra, or otherwise.
See below for more details.
Upload files directly to a Convex action, httpAction, or upload url. See the docs for more details.
export const uploadFile = action({
args: {
filename: v.string(),
contentType: v.string(),
bytes: v.bytes(),
category: v.string(),
},
handler: async (ctx, args) => {
const userId = await getUserId(ctx);
if (!userId) throw new Error("Unauthorized");
const { filename, contentType, bytes, category } = args;
// Store file in Convex storage
const storageId = await ctx.storage.store(
new Blob([bytes], { type: contentType })
);
// Extract and chunk text content
const textContent = new TextDecoder().decode(bytes);
const chunks = await textSplitter.splitText(textContent);
const { entryId } = await memory.add(ctx, {
namespace: userId, // per-user namespace
key: filename,
title: filename,
chunks,
source: { kind: "_storage", storageId },
filterValues: [
{ name: "category", value: category },
{ name: "contentType", value: contentType },
{ name: "categoryAndType", value: { category, contentType } },
],
});
return { entryId, url: await ctx.storage.getUrl(storageId) };
},
});
Search across content with vector similarity
text
is the plain text content of the results concatenated together.results
is an array of matching chunks with scores and more metadata.sources
is an array of the entries that matched the query. Each result has aentryId
referencing one of these source entries.
export const search = action({
args: {
query: v.string(),
},
handler: async (ctx, args) => {
const { results, text, sources } = await memory.search(ctx, {
namespace: "global",
query: args.query,
limit: 10
});
return { results, text, sources };
},
});
Search with metadata filters:
export const searchByCategory = action({
args: {
query: v.string(),
category: v.string(),
},
handler: async (ctx, args) => {
const userId = await getUserId(ctx);
if (!userId) throw new Error("Unauthorized");
const results = await memory.search(ctx, {
namespace: userId,
query: args.query,
filters: [{ name: "category", value: args.category }],
limit: 10,
});
return results;
},
});
Get surrounding chunks for better context:
export const searchWithContext = action({
args: {
query: v.string(),
userId: v.string(),
},
handler: async (ctx, args) => {
const results = await memory.search(ctx, {
namespace: args.userId,
query: args.query,
chunkContext: { before: 2, after: 1 }, // Include 2 chunks before, 1 after
limit: 5,
});
return results;
},
});
Delete an entry:
export const delete = mutation({
args: { entryId: vEntry },
handler: async (ctx, args) => {
await memory.delete(ctx, {
entryId: args.entryId,
});
},
});
For large files, use async processing:
export const chunkerAction = memory.defineChunkerAction(
async (ctx, args) => {
// Custom chunking logic for large files
// This can be an async iterator if you can't fit it all in memory at once.
const chunks = await processLargeFile(args.source);
return { chunks };
}
);
export const uploadLargeFile = action({
args: {
filename: v.string(),
url: v.string(),
},
handler: async (ctx, args) => {
const userId = await getUserId(ctx);
if (!userId) throw new Error("Unauthorized");
const { entryId } = await memory.addAsync(ctx, {
namespace: userId,
key: args.filename,
source: { kind: "url", url: args.url },
chunkerAction: internal.example.chunkerAction,
});
return { entryId };
},
});
See more example usage in example.ts.
Run the example with npm i && npm run example
.