@@ -176,18 +176,18 @@ def niceLogspace(vMin, vMax, nDec=10):
176176 >>> from pygimli.utils import niceLogspace
177177 >>> v1 = niceLogspace(vMin=0.1, vMax=0.1, nDec=1)
178178 >>> print(v1)
179- [ 0.1 1. ]
179+ [0.1 1. ]
180180 >>> v1 = niceLogspace(vMin=0.09, vMax=0.11, nDec=1)
181181 >>> print(v1)
182- [ 0.01 0.1 1. ]
182+ [0.01 0.1 1. ]
183183 >>> v1 = niceLogspace(vMin=0.09, vMax=0.11, nDec=10)
184184 >>> print(len(v1))
185185 21
186186 >>> print(v1)
187- [ 0.01 0.01258925 0.01584893 0.01995262 0.02511886 0.03162278
188- 0.03981072 0.05011872 0.06309573 0.07943282 0.1 0.12589254
189- 0.15848932 0.19952623 0.25118864 0.31622777 0.39810717 0.50118723
190- 0.63095734 0.79432823 1. ]
187+ [0.01 0.01258925 0.01584893 0.01995262 0.02511886 0.03162278
188+ 0.03981072 0.05011872 0.06309573 0.07943282 0.1 0.12589254
189+ 0.15848932 0.19952623 0.25118864 0.31622777 0.39810717 0.50118723
190+ 0.63095734 0.79432823 1. ]
191191 """
192192 if vMin > vMax or vMin < 1e-12 :
193193 print ("vMin:" , vMin , "vMax" , vMax )
@@ -355,11 +355,11 @@ def dist(p, c=None):
355355 >>> p[0] = [0.0, 0.0]
356356 >>> p[1] = [0.0, 1.0]
357357 >>> print(dist(p))
358- [ 0. 1. 0. 0.]
358+ [0. 1. 0. 0.]
359359 >>> x = pg.RVector(4, 0)
360360 >>> y = pg.RVector(4, 1)
361361 >>> print(dist(np.array([x, y]).T))
362- [ 1. 1. 1. 1.]
362+ [1. 1. 1. 1.]
363363 """
364364 if c is None :
365365 c = pg .RVector3 (0.0 , 0.0 , 0.0 )
@@ -403,7 +403,7 @@ def cumDist(p):
403403 >>> p[2] = [0.0, 1.0]
404404 >>> p[3] = [0.0, 0.0]
405405 >>> print(cumDist(p))
406- [ 0. 1. 1. 2.]
406+ [0. 1. 1. 2.]
407407 """
408408 d = np .zeros (len (p ))
409409 d [1 :] = np .cumsum (dist (diff (p )))
@@ -631,7 +631,7 @@ def uniqueAndSum(indices, to_sum, return_index=False, verbose=False):
631631 >>> # you need for example 3 array to find unique node positions in a mesh
632632 >>> values = np.arange(0.1, 0.7, 0.1)
633633 >>> print(values)
634- [ 0.1 0.2 0.3 0.4 0.5 0.6]
634+ [0.1 0.2 0.3 0.4 0.5 0.6]
635635 >>> # some values to be summed together (for example attributes of nodes)
636636 >>> unique_idx, summed_vals = uniqueAndSum(to_sort, values)
637637 >>> print(unique_idx)
@@ -640,7 +640,7 @@ def uniqueAndSum(indices, to_sum, return_index=False, verbose=False):
640640 [1 2]
641641 [2 3]]
642642 >>> print(summed_vals)
643- [ 0.3 0.3 0.4 1.1]
643+ [0.3 0.3 0.4 1.1]
644644 """
645645 flag_mult = len (indices ) != indices .size
646646 if verbose :
0 commit comments