Skip to content

Erdős Problem 43 #221

@mo271

Description

@mo271

What is the conjecture

https://www.erdosproblems.com/43

If $A,B\subset {1,\ldots,N}$ are two Sidon sets such that $(A-A)\cap(B-B)={0}$ then is it true that
$$\binom{\lvert A\rvert}{2}+\binom{\lvert B\rvert}{2}\leq\binom{f(N)}{2}+O(1) $$,
where $f(N)$ is the maximum possible size of a Sidon set in ${1,\ldots,N}$? If $\lvert A\rvert=\lvert B\rvert$ then can this bound be improved to

$$\binom{\lvert A\rvert}{2}+\binom{\lvert B\rvert}{2}\leq (1-c)\binom{f(N)}{2}$$
for some constant $c>0$?

Status: open

Prerequisites needed

None, Sidon sets is already in ForMathlib

Metadata

Metadata

Assignees

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions