|
| 1 | +# Copyright 2025-present the HuggingFace Inc. team. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import os |
| 16 | +from typing import Optional |
| 17 | + |
| 18 | +import torch |
| 19 | +from datasets import load_dataset |
| 20 | +from transformers import ( |
| 21 | + AutoModelForCausalLM, |
| 22 | + AutoTokenizer, |
| 23 | + BitsAndBytesConfig, |
| 24 | + DataCollatorForLanguageModeling, |
| 25 | + Trainer, |
| 26 | + TrainingArguments, |
| 27 | +) |
| 28 | + |
| 29 | +from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training |
| 30 | +from peft.optimizers import create_lorafa_optimizer |
| 31 | + |
| 32 | + |
| 33 | +def train_model( |
| 34 | + base_model_name_or_path: str, |
| 35 | + dataset_name_or_path: str, |
| 36 | + output_dir: str, |
| 37 | + batch_size: int, |
| 38 | + num_epochs: int, |
| 39 | + lr: float, |
| 40 | + cutoff_len: int, |
| 41 | + quantize: bool, |
| 42 | + eval_step: int, |
| 43 | + save_step: int, |
| 44 | + lora_rank: int, |
| 45 | + lora_alpha: int, |
| 46 | + lora_dropout: float, |
| 47 | + lora_target_modules: Optional[str], |
| 48 | + lorafa: bool, |
| 49 | +): |
| 50 | + os.environ["TOKENIZERS_PARALLELISM"] = "false" |
| 51 | + |
| 52 | + compute_dtype = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else torch.float16 |
| 53 | + device_map = "cuda" if torch.cuda.is_available() else None |
| 54 | + |
| 55 | + # load tokenizer |
| 56 | + tokenizer = AutoTokenizer.from_pretrained(base_model_name_or_path) |
| 57 | + |
| 58 | + # load model |
| 59 | + if quantize: |
| 60 | + model = AutoModelForCausalLM.from_pretrained( |
| 61 | + base_model_name_or_path, |
| 62 | + quantization_config=BitsAndBytesConfig( |
| 63 | + load_in_4bit=True, |
| 64 | + bnb_4bit_compute_dtype=compute_dtype, |
| 65 | + bnb_4bit_use_double_quant=False, |
| 66 | + bnb_4bit_quant_type="nf4", |
| 67 | + ), |
| 68 | + torch_dtype=compute_dtype, |
| 69 | + device_map=device_map, |
| 70 | + ) |
| 71 | + # setup for quantized training |
| 72 | + model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=True) |
| 73 | + else: |
| 74 | + model = AutoModelForCausalLM.from_pretrained( |
| 75 | + base_model_name_or_path, torch_dtype=compute_dtype, device_map=device_map |
| 76 | + ) |
| 77 | + |
| 78 | + # LoRA config for the PEFT model |
| 79 | + if lora_target_modules is not None: |
| 80 | + if lora_target_modules == "all-linear": |
| 81 | + target_modules = "all-linear" |
| 82 | + else: |
| 83 | + target_modules = lora_target_modules.split(",") |
| 84 | + else: |
| 85 | + target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"] |
| 86 | + |
| 87 | + lora_config = LoraConfig( |
| 88 | + r=lora_rank, |
| 89 | + lora_alpha=lora_alpha, |
| 90 | + target_modules=target_modules, |
| 91 | + lora_dropout=lora_dropout, |
| 92 | + bias="none", |
| 93 | + ) |
| 94 | + |
| 95 | + # get the peft model with LoRA config |
| 96 | + model = get_peft_model(model, lora_config) |
| 97 | + |
| 98 | + tokenizer.pad_token = tokenizer.eos_token |
| 99 | + |
| 100 | + # Load the dataset |
| 101 | + dataset = load_dataset(dataset_name_or_path) |
| 102 | + |
| 103 | + def tokenize_function(examples): |
| 104 | + inputs = tokenizer(examples["query"], padding="max_length", truncation=True, max_length=cutoff_len) |
| 105 | + outputs = tokenizer(examples["response"], padding="max_length", truncation=True, max_length=cutoff_len) |
| 106 | + inputs["labels"] = outputs["input_ids"].copy() |
| 107 | + return inputs |
| 108 | + |
| 109 | + # Tokenize the dataset and prepare for training |
| 110 | + tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=dataset["train"].column_names) |
| 111 | + dataset = tokenized_datasets["train"].train_test_split(test_size=0.1, shuffle=True, seed=42) |
| 112 | + train_dataset = dataset["train"] |
| 113 | + eval_dataset = dataset["test"] |
| 114 | + |
| 115 | + # Data collator to dynamically pad the batched examples |
| 116 | + data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False) |
| 117 | + |
| 118 | + # Define training arguments |
| 119 | + training_args = TrainingArguments( |
| 120 | + output_dir=output_dir, |
| 121 | + num_train_epochs=num_epochs, |
| 122 | + per_device_train_batch_size=batch_size, |
| 123 | + per_device_eval_batch_size=batch_size, |
| 124 | + warmup_steps=100, |
| 125 | + weight_decay=0.01, |
| 126 | + logging_dir="./logs", |
| 127 | + logging_steps=eval_step, |
| 128 | + save_steps=save_step, |
| 129 | + save_total_limit=2, |
| 130 | + gradient_accumulation_steps=1, |
| 131 | + bf16=True if compute_dtype == torch.bfloat16 else False, |
| 132 | + fp16=True if compute_dtype == torch.float16 else False, |
| 133 | + learning_rate=lr, |
| 134 | + ) |
| 135 | + |
| 136 | + # Here we initialize the LoRA-FA Optimizer |
| 137 | + # After this, all adapter A will be fixed, only adapter B will be trainable |
| 138 | + if lorafa: |
| 139 | + optimizer = create_lorafa_optimizer( |
| 140 | + model=model, r=lora_rank, lora_alpha=lora_alpha, lr=lr, weight_decay=training_args.weight_decay |
| 141 | + ) |
| 142 | + trainer = Trainer( |
| 143 | + model=model, |
| 144 | + args=training_args, |
| 145 | + train_dataset=train_dataset, |
| 146 | + eval_dataset=eval_dataset, |
| 147 | + data_collator=data_collator, |
| 148 | + optimizers=(optimizer, None), |
| 149 | + ) |
| 150 | + else: |
| 151 | + trainer = Trainer( |
| 152 | + model=model, |
| 153 | + args=training_args, |
| 154 | + train_dataset=train_dataset, |
| 155 | + eval_dataset=eval_dataset, |
| 156 | + data_collator=data_collator, |
| 157 | + ) |
| 158 | + |
| 159 | + # Start model training |
| 160 | + trainer.train() |
| 161 | + |
| 162 | + # Save the model and tokenizer locally |
| 163 | + model.save_pretrained(output_dir) |
| 164 | + tokenizer.save_pretrained(output_dir) |
| 165 | + |
| 166 | + |
| 167 | +if __name__ == "__main__": |
| 168 | + import argparse |
| 169 | + |
| 170 | + parser = argparse.ArgumentParser(description="Fine-tune Meta-Llama-3-8B-Instruct with LoRA-FA and PEFT") |
| 171 | + parser.add_argument( |
| 172 | + "--base_model_name_or_path", |
| 173 | + type=str, |
| 174 | + default="meta-llama/Meta-Llama-3-8B-Instruct", |
| 175 | + help="Base model name or path", |
| 176 | + ) |
| 177 | + parser.add_argument( |
| 178 | + "--dataset_name_or_path", type=str, default="meta-math/MetaMathQA-40K", help="Dataset name or path" |
| 179 | + ) |
| 180 | + parser.add_argument("--output_dir", type=str, help="Output directory for the fine-tuned model") |
| 181 | + parser.add_argument("--batch_size", type=int, default=1, help="Batch size") |
| 182 | + parser.add_argument("--num_epochs", type=int, default=3, help="Number of training epochs") |
| 183 | + parser.add_argument("--lr", type=float, default=7e-5, help="Learning rate") |
| 184 | + parser.add_argument("--cutoff_len", type=int, default=1024, help="Cutoff length for tokenization") |
| 185 | + parser.add_argument("--quantize", action="store_true", help="Use quantization") |
| 186 | + parser.add_argument("--eval_step", type=int, default=10, help="Evaluation step interval") |
| 187 | + parser.add_argument("--save_step", type=int, default=100, help="Save step interval") |
| 188 | + parser.add_argument("--lora_rank", type=int, default=16, help="LoRA rank") |
| 189 | + parser.add_argument("--lora_alpha", type=int, default=32, help="LoRA alpha") |
| 190 | + parser.add_argument("--lora_dropout", type=float, default=0.05, help="LoRA dropout rate") |
| 191 | + parser.add_argument( |
| 192 | + "--lora_target_modules", type=str, default=None, help="Comma-separated list of target modules for LoRA" |
| 193 | + ) |
| 194 | + parser.add_argument("--lorafa", action="store_true", help="Use LoRA-FA Optimizer") |
| 195 | + |
| 196 | + args = parser.parse_args() |
| 197 | + |
| 198 | + train_model( |
| 199 | + base_model_name_or_path=args.base_model_name_or_path, |
| 200 | + dataset_name_or_path=args.dataset_name_or_path, |
| 201 | + output_dir=args.output_dir, |
| 202 | + batch_size=args.batch_size, |
| 203 | + num_epochs=args.num_epochs, |
| 204 | + lr=args.lr, |
| 205 | + cutoff_len=args.cutoff_len, |
| 206 | + quantize=args.quantize, |
| 207 | + eval_step=args.eval_step, |
| 208 | + save_step=args.save_step, |
| 209 | + lora_rank=args.lora_rank, |
| 210 | + lora_alpha=args.lora_alpha, |
| 211 | + lora_dropout=args.lora_dropout, |
| 212 | + lora_target_modules=args.lora_target_modules, |
| 213 | + lorafa=args.lorafa, |
| 214 | + ) |
0 commit comments