Skip to content

Commit 12d994a

Browse files
committed
Changing test_gpu_examples.py and check the arrow test to be passed.
1 parent 8f205c5 commit 12d994a

File tree

1 file changed

+0
-221
lines changed

1 file changed

+0
-221
lines changed

tests/test_gpu_examples.py

Lines changed: 0 additions & 221 deletions
Original file line numberDiff line numberDiff line change
@@ -66,7 +66,6 @@
6666
PrefixTuningConfig,
6767
PromptEncoderConfig,
6868
RandLoraConfig,
69-
RoadConfig,
7069
TaskType,
7170
VeraConfig,
7271
create_arrow_model,
@@ -1722,226 +1721,6 @@ def test_causal_lm_training_multi_gpu_4bit_randlora(self):
17221721
# assert loss is not None
17231722
assert trainer.state.log_history[-1]["train_loss"] is not None
17241723

1725-
@pytest.mark.single_gpu_tests
1726-
def test_causal_lm_training_8bit_road(self):
1727-
r"""
1728-
Same as test_causal_lm_training but with RoAd
1729-
"""
1730-
with tempfile.TemporaryDirectory() as tmp_dir:
1731-
model = AutoModelForCausalLM.from_pretrained(
1732-
self.causal_lm_model_id,
1733-
quantization_config=BitsAndBytesConfig(load_in_8bit=True),
1734-
device_map="auto",
1735-
)
1736-
1737-
tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
1738-
model = prepare_model_for_kbit_training(model)
1739-
1740-
config = RoadConfig(
1741-
variant="road_1",
1742-
target_modules=["q_proj", "v_proj"],
1743-
task_type="CAUSAL_LM",
1744-
)
1745-
1746-
model = get_peft_model(model, config)
1747-
1748-
data = load_dataset("ybelkada/english_quotes_copy")
1749-
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
1750-
1751-
trainer = Trainer(
1752-
model=model,
1753-
train_dataset=data["train"],
1754-
args=TrainingArguments(
1755-
per_device_train_batch_size=4,
1756-
gradient_accumulation_steps=4,
1757-
warmup_steps=2,
1758-
max_steps=3,
1759-
learning_rate=1e-3,
1760-
fp16=True,
1761-
logging_steps=1,
1762-
output_dir=tmp_dir,
1763-
),
1764-
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
1765-
)
1766-
model.config.use_cache = False
1767-
trainer.train()
1768-
1769-
model.cpu().save_pretrained(tmp_dir)
1770-
1771-
assert "adapter_config.json" in os.listdir(tmp_dir)
1772-
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
1773-
1774-
# assert loss is not None
1775-
assert trainer.state.log_history[-1]["train_loss"] is not None
1776-
1777-
@pytest.mark.single_gpu_tests
1778-
def test_causal_lm_training_4bit_road(self):
1779-
r"""
1780-
Same as test_causal_lm_training_4bit but with RoAd
1781-
"""
1782-
with tempfile.TemporaryDirectory() as tmp_dir:
1783-
model = AutoModelForCausalLM.from_pretrained(
1784-
self.causal_lm_model_id,
1785-
quantization_config=BitsAndBytesConfig(load_in_4bit=True),
1786-
device_map="auto",
1787-
)
1788-
1789-
tokenizer = AutoTokenizer.from_pretrained(self.causal_lm_model_id)
1790-
model = prepare_model_for_kbit_training(model)
1791-
1792-
config = RoadConfig(
1793-
variant="road_1",
1794-
target_modules=["q_proj", "v_proj"],
1795-
task_type="CAUSAL_LM",
1796-
)
1797-
1798-
model = get_peft_model(model, config)
1799-
1800-
data = load_dataset("ybelkada/english_quotes_copy")
1801-
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
1802-
1803-
trainer = Trainer(
1804-
model=model,
1805-
train_dataset=data["train"],
1806-
args=TrainingArguments(
1807-
per_device_train_batch_size=4,
1808-
gradient_accumulation_steps=4,
1809-
warmup_steps=2,
1810-
max_steps=3,
1811-
learning_rate=1e-3,
1812-
fp16=True,
1813-
logging_steps=1,
1814-
output_dir=tmp_dir,
1815-
),
1816-
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
1817-
)
1818-
model.config.use_cache = False
1819-
trainer.train()
1820-
1821-
model.cpu().save_pretrained(tmp_dir)
1822-
1823-
assert "adapter_config.json" in os.listdir(tmp_dir)
1824-
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
1825-
1826-
# assert loss is not None
1827-
assert trainer.state.log_history[-1]["train_loss"] is not None
1828-
1829-
@pytest.mark.multi_gpu_tests
1830-
def test_causal_lm_training_multi_gpu_8bit_road(self):
1831-
r"""
1832-
Same as test_causal_lm_training_multi_gpu but with RoAd
1833-
"""
1834-
1835-
with tempfile.TemporaryDirectory() as tmp_dir:
1836-
model = AutoModelForCausalLM.from_pretrained(
1837-
self.causal_lm_model_id,
1838-
device_map=DEVICE_MAP_MAP[self.causal_lm_model_id],
1839-
quantization_config=BitsAndBytesConfig(load_in_8bit=True),
1840-
)
1841-
1842-
assert set(model.hf_device_map.values()) == set(range(device_count))
1843-
assert {p.device.index for p in model.parameters()} == set(range(device_count))
1844-
1845-
model = prepare_model_for_kbit_training(model)
1846-
1847-
setattr(model, "model_parallel", True)
1848-
setattr(model, "is_parallelizable", True)
1849-
1850-
config = RoadConfig(
1851-
variant="road_1",
1852-
target_modules=["q_proj", "v_proj"],
1853-
task_type="CAUSAL_LM",
1854-
)
1855-
1856-
model = get_peft_model(model, config)
1857-
1858-
data = load_dataset("Abirate/english_quotes")
1859-
data = data.map(lambda samples: self.tokenizer(samples["quote"]), batched=True)
1860-
1861-
trainer = Trainer(
1862-
model=model,
1863-
train_dataset=data["train"],
1864-
args=TrainingArguments(
1865-
per_device_train_batch_size=4,
1866-
gradient_accumulation_steps=4,
1867-
warmup_steps=2,
1868-
max_steps=3,
1869-
learning_rate=1e-3,
1870-
fp16=True,
1871-
logging_steps=1,
1872-
output_dir=tmp_dir,
1873-
),
1874-
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
1875-
)
1876-
model.config.use_cache = False
1877-
trainer.train()
1878-
1879-
model.cpu().save_pretrained(tmp_dir)
1880-
1881-
assert "adapter_config.json" in os.listdir(tmp_dir)
1882-
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
1883-
1884-
# assert loss is not None
1885-
assert trainer.state.log_history[-1]["train_loss"] is not None
1886-
1887-
@pytest.mark.multi_gpu_tests
1888-
def test_causal_lm_training_multi_gpu_4bit_road(self):
1889-
r"""
1890-
Same as test_causal_lm_training_multi_gpu_4bit but with RoAd
1891-
"""
1892-
1893-
with tempfile.TemporaryDirectory() as tmp_dir:
1894-
model = AutoModelForCausalLM.from_pretrained(
1895-
self.causal_lm_model_id,
1896-
device_map=DEVICE_MAP_MAP[self.causal_lm_model_id],
1897-
quantization_config=BitsAndBytesConfig(load_in_4bit=True),
1898-
)
1899-
1900-
assert set(model.hf_device_map.values()) == set(range(device_count))
1901-
assert {p.device.index for p in model.parameters()} == set(range(device_count))
1902-
1903-
model = prepare_model_for_kbit_training(model)
1904-
1905-
setattr(model, "model_parallel", True)
1906-
setattr(model, "is_parallelizable", True)
1907-
1908-
config = RoadConfig(
1909-
variant="road_1",
1910-
target_modules=["q_proj", "v_proj"],
1911-
task_type="CAUSAL_LM",
1912-
)
1913-
1914-
model = get_peft_model(model, config)
1915-
1916-
data = load_dataset("Abirate/english_quotes")
1917-
data = data.map(lambda samples: self.tokenizer(samples["quote"]), batched=True)
1918-
1919-
trainer = Trainer(
1920-
model=model,
1921-
train_dataset=data["train"],
1922-
args=TrainingArguments(
1923-
per_device_train_batch_size=4,
1924-
gradient_accumulation_steps=4,
1925-
warmup_steps=2,
1926-
max_steps=3,
1927-
learning_rate=1e-3,
1928-
fp16=True,
1929-
logging_steps=1,
1930-
output_dir=tmp_dir,
1931-
),
1932-
data_collator=DataCollatorForLanguageModeling(self.tokenizer, mlm=False),
1933-
)
1934-
model.config.use_cache = False
1935-
trainer.train()
1936-
1937-
model.cpu().save_pretrained(tmp_dir)
1938-
1939-
assert "adapter_config.json" in os.listdir(tmp_dir)
1940-
assert SAFETENSORS_WEIGHTS_NAME in os.listdir(tmp_dir)
1941-
1942-
# assert loss is not None
1943-
assert trainer.state.log_history[-1]["train_loss"] is not None
1944-
19451724
@pytest.mark.single_gpu_tests
19461725
def test_causal_lm_training_lora_resize_embeddings_trainable_tokens(self):
19471726
r"""

0 commit comments

Comments
 (0)