-
Notifications
You must be signed in to change notification settings - Fork 2.1k
Closed
Description
System Info
Accelerateversion: 1.10.1- Platform: Linux-5.15.0-157-generic-x86_64-with-glibc2.39
acceleratebash location: /opt/uv/venv/bin/accelerate- Python version: 3.12.11
- Numpy version: 2.2.6
- PyTorch version: 2.9.0.dev20250825+cu128
- PyTorch accelerator: CUDA
- System RAM: 1003.13 GB
- GPU type: NVIDIA H100 80GB HBM3
Acceleratedefault config:
Not found- peft version: 0.15.2
- transformers version: 4.56.1
Who can help?
Reproduction
Add --use_8bit_quantization True to peft/examples/sft/run_peft_qlora_fsdp.sh
accelerate launch --config_file "configs/fsdp_config_qlora.yaml" train.py \
--seed 100 \
--model_name_or_path "meta-llama/Llama-3.1-8B-Instruct" \
--dataset_name "smangrul/ultrachat-10k-chatml" \
--chat_template_format "chatml" \
--add_special_tokens False \
--append_concat_token False \
--splits "train,test" \
--max_seq_len 2048 \
--num_train_epochs 1 \
--logging_steps 5 \
--log_level "info" \
--logging_strategy "steps" \
--eval_strategy "epoch" \
--save_strategy "epoch" \
--bf16 True \
--packing True \
--learning_rate 1e-4 \
--lr_scheduler_type "cosine" \
--weight_decay 1e-4 \
--warmup_ratio 0.0 \
--max_grad_norm 1.0 \
--output_dir "llama-sft-qlora-fsdp" \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 2 \
--gradient_accumulation_steps 2 \
--gradient_checkpointing True \
--use_reentrant True \
--dataset_text_field "content" \
--use_flash_attn True \
--use_peft_lora True \
--lora_r 8 \
--lora_alpha 16 \
--lora_dropout 0.1 \
--lora_target_modules "all-linear" \
--use_4bit_quantization True \
--use_8bit_quantization True
Expected behavior
Training should complete, instead we get ValueError: Cannot flatten integer dtype tensors
EricSaikali
Metadata
Metadata
Assignees
Labels
No labels