Skip to content

Commit 1d9743e

Browse files
Updated model card for mbart and mbart50 (#37619)
* new card for mbart and mbart50 * removed comment BADGES * Update mBart overview Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * fix typo (MBart to mBart) Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * maybe fix typo * update typo and combine notes * changed notes * changed the example sentence * fixed grammatical error and removed some lines from notes example * missed one word * removed documentation resources and added some lines of example code back in notes. --------- Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
1 parent fbfa1dd commit 1d9743e

File tree

1 file changed

+72
-121
lines changed

1 file changed

+72
-121
lines changed

docs/source/en/model_doc/mbart.md

+72-121
Original file line numberDiff line numberDiff line change
@@ -14,154 +14,105 @@ rendered properly in your Markdown viewer.
1414
1515
-->
1616

17-
# MBart and MBart-50
18-
19-
<div class="flex flex-wrap space-x-1">
20-
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
21-
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
22-
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
23-
">
24-
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
25-
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
17+
<div style="float: right;">
18+
<div class="flex flex-wrap space-x-1">
19+
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
20+
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
21+
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat">
22+
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
23+
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
24+
</div>
2625
</div>
2726

27+
# mBART
2828

29-
## Overview of MBart
29+
[mBART](https://huggingface.co/papers/2001.08210) is a multilingual machine translation model that pretrains the entire translation model (encoder-decoder) unlike previous methods that only focused on parts of the model. The model is trained on a denoising objective which reconstructs the corrupted text. This allows mBART to handle the source language and the target text to translate to.
3030

31-
The MBart model was presented in [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov Marjan
32-
Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
31+
[mBART-50](https://huggingface.co/paper/2008.00401) is pretrained on an additional 25 languages.
3332

34-
According to the abstract, MBART is a sequence-to-sequence denoising auto-encoder pretrained on large-scale monolingual
35-
corpora in many languages using the BART objective. mBART is one of the first methods for pretraining a complete
36-
sequence-to-sequence model by denoising full texts in multiple languages, while previous approaches have focused only
37-
on the encoder, decoder, or reconstructing parts of the text.
33+
You can find all the original mBART checkpoints under the [AI at Meta](https://huggingface.co/facebook?search_models=mbart) organization.
3834

39-
This model was contributed by [valhalla](https://huggingface.co/valhalla). The Authors' code can be found [here](https://github.com/pytorch/fairseq/tree/master/examples/mbart)
35+
> [!TIP]
36+
> Click on the mBART models in the right sidebar for more examples of applying mBART to different language tasks.
4037
41-
### Training of MBart
38+
The example below demonstrates how to translate text with [`Pipeline`] or the [`AutoModel`] class.
4239

43-
MBart is a multilingual encoder-decoder (sequence-to-sequence) model primarily intended for translation task. As the
44-
model is multilingual it expects the sequences in a different format. A special language id token is added in both the
45-
source and target text. The source text format is `X [eos, src_lang_code]` where `X` is the source text. The
46-
target text format is `[tgt_lang_code] X [eos]`. `bos` is never used.
40+
<hfoptions id="usage">
41+
<hfoption id="Pipeline">
4742

48-
The regular [`~MBartTokenizer.__call__`] will encode source text format passed as first argument or with the `text`
49-
keyword, and target text format passed with the `text_label` keyword argument.
43+
```py
44+
import torch
45+
from transformers import pipeline
5046

51-
- Supervised training
52-
53-
```python
54-
>>> from transformers import MBartForConditionalGeneration, MBartTokenizer
55-
56-
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-en-ro", src_lang="en_XX", tgt_lang="ro_RO")
57-
>>> example_english_phrase = "UN Chief Says There Is No Military Solution in Syria"
58-
>>> expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria"
59-
60-
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_romanian, return_tensors="pt")
61-
62-
>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro")
63-
>>> # forward pass
64-
>>> model(**inputs)
65-
```
66-
67-
- Generation
68-
69-
While generating the target text set the `decoder_start_token_id` to the target language id. The following
70-
example shows how to translate English to Romanian using the *facebook/mbart-large-en-ro* model.
71-
72-
```python
73-
>>> from transformers import MBartForConditionalGeneration, MBartTokenizer
74-
75-
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-en-ro", src_lang="en_XX")
76-
>>> article = "UN Chief Says There Is No Military Solution in Syria"
77-
>>> inputs = tokenizer(article, return_tensors="pt")
78-
>>> translated_tokens = model.generate(**inputs, decoder_start_token_id=tokenizer.lang_code_to_id["ro_RO"])
79-
>>> tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
80-
"Şeful ONU declară că nu există o soluţie militară în Siria"
47+
pipeline = pipeline(
48+
task="translation",
49+
model="facebook/mbart-large-50-many-to-many-mmt",
50+
device=0,
51+
torch_dtype=torch.float16,
52+
src_lang="en_XX",
53+
tgt_lang="fr_XX",
54+
)
55+
print(pipeline("UN Chief Says There Is No Military Solution in Syria"))
8156
```
8257

83-
## Overview of MBart-50
84-
85-
MBart-50 was introduced in the [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) paper by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav
86-
Chaudhary, Jiatao Gu, Angela Fan. MBart-50 is created using the original *mbart-large-cc25* checkpoint by extending
87-
its embedding layers with randomly initialized vectors for an extra set of 25 language tokens and then pretrained on 50
88-
languages.
58+
</hfoption>
59+
<hfoption id="AutoModel">
8960

90-
According to the abstract
61+
```py
62+
import torch
63+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
9164

92-
*Multilingual translation models can be created through multilingual finetuning. Instead of finetuning on one
93-
direction, a pretrained model is finetuned on many directions at the same time. It demonstrates that pretrained models
94-
can be extended to incorporate additional languages without loss of performance. Multilingual finetuning improves on
95-
average 1 BLEU over the strongest baselines (being either multilingual from scratch or bilingual finetuning) while
96-
improving 9.3 BLEU on average over bilingual baselines from scratch.*
65+
article_en = "UN Chief Says There Is No Military Solution in Syria"
9766

67+
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", torch_dtype=torch.bfloat16, attn_implementation="sdpa", device_map="auto")
68+
tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
9869

99-
### Training of MBart-50
100-
101-
The text format for MBart-50 is slightly different from mBART. For MBart-50 the language id token is used as a prefix
102-
for both source and target text i.e the text format is `[lang_code] X [eos]`, where `lang_code` is source
103-
language id for source text and target language id for target text, with `X` being the source or target text
104-
respectively.
105-
106-
107-
MBart-50 has its own tokenizer [`MBart50Tokenizer`].
108-
109-
- Supervised training
110-
111-
```python
112-
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
113-
114-
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50")
115-
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO")
70+
tokenizer.src_lang = "en_XX"
71+
encoded_hi = tokenizer(article_en, return_tensors="pt").to("cuda")
72+
generated_tokens = model.generate(**encoded_hi, forced_bos_token_id=tokenizer.lang_code_to_id["fr_XX"], cache_implementation="static")
73+
print(tokenizer.batch_decode(generated_tokens, skip_special_tokens=True))
74+
```
11675

117-
src_text = " UN Chief Says There Is No Military Solution in Syria"
118-
tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
76+
</hfoption>
77+
</hfoptions>
11978

120-
model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
79+
## Notes
12180

122-
model(**model_inputs) # forward pass
123-
```
81+
- You can check the full list of language codes via `tokenizer.lang_code_to_id.keys()`.
82+
- mBART requires a special language id token in the source and target text during training. The source text format is `X [eos, src_lang_code]` where `X` is the source text. The target text format is `[tgt_lang_code] X [eos]`. The `bos` token is never used. The [`~PreTrainedTokenizerBase._call_`] encodes the source text format passed as the first argument or with the `text` keyword. The target text format is passed with the `text_label` keyword.
83+
- Set the `decoder_start_token_id` to the target language id for mBART.
12484

125-
- Generation
85+
```py
86+
import torch
87+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
12688

127-
To generate using the mBART-50 multilingual translation models, `eos_token_id` is used as the
128-
`decoder_start_token_id` and the target language id is forced as the first generated token. To force the
129-
target language id as the first generated token, pass the *forced_bos_token_id* parameter to the *generate* method.
130-
The following example shows how to translate between Hindi to French and Arabic to English using the
131-
*facebook/mbart-50-large-many-to-many* checkpoint.
89+
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-en-ro", torch_dtype=torch.bfloat16, attn_implementation="sdpa", device_map="auto")
90+
tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-en-ro", src_lang="en_XX")
13291

133-
```python
134-
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
92+
article = "UN Chief Says There Is No Military Solution in Syria"
93+
inputs = tokenizer(article, return_tensors="pt")
13594

136-
article_hi = "संयुक्त राष्ट्र के प्रमुख का कहना है कि सीरिया में कोई सैन्य समाधान नहीं है"
137-
article_ar = "الأمين العام للأمم المتحدة يقول إنه لا يوجد حل عسكري في سوريا."
95+
translated_tokens = model.generate(**inputs, decoder_start_token_id=tokenizer.lang_code_to_id["ro_RO"])
96+
tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
97+
```
13898

139-
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
140-
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
99+
- mBART-50 has a different text format. The language id token is used as the prefix for the source and target text. The text format is `[lang_code] X [eos]` where `lang_code` is the source language id for the source text and target language id for the target text. `X` is the source or target text respectively.
100+
- Set the `eos_token_id` as the `decoder_start_token_id` for mBART-50. The target language id is used as the first generated token by passing `forced_bos_token_id` to [`~GenerationMixin.generate`].
141101

142-
# translate Hindi to French
143-
tokenizer.src_lang = "hi_IN"
144-
encoded_hi = tokenizer(article_hi, return_tensors="pt")
145-
generated_tokens = model.generate(**encoded_hi, forced_bos_token_id=tokenizer.lang_code_to_id["fr_XX"])
146-
tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
147-
# => "Le chef de l 'ONU affirme qu 'il n 'y a pas de solution militaire en Syria."
102+
```py
103+
import torch
104+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
148105

149-
# translate Arabic to English
150-
tokenizer.src_lang = "ar_AR"
151-
encoded_ar = tokenizer(article_ar, return_tensors="pt")
152-
generated_tokens = model.generate(**encoded_ar, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
153-
tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
154-
# => "The Secretary-General of the United Nations says there is no military solution in Syria."
155-
```
106+
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", torch_dtype=torch.bfloat16, attn_implementation="sdpa", device_map="auto")
107+
tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
156108

157-
## Documentation resources
109+
article_ar = "الأمين العام للأمم المتحدة يقول إنه لا يوجد حل عسكري في سوريا."
110+
tokenizer.src_lang = "ar_AR"
158111

159-
- [Text classification task guide](../tasks/sequence_classification)
160-
- [Question answering task guide](../tasks/question_answering)
161-
- [Causal language modeling task guide](../tasks/language_modeling)
162-
- [Masked language modeling task guide](../tasks/masked_language_modeling)
163-
- [Translation task guide](../tasks/translation)
164-
- [Summarization task guide](../tasks/summarization)
112+
encoded_ar = tokenizer(article_ar, return_tensors="pt")
113+
generated_tokens = model.generate(**encoded_ar, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
114+
tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
115+
```
165116

166117
## MBartConfig
167118

@@ -253,4 +204,4 @@ tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
253204
- decode
254205

255206
</jax>
256-
</frameworkcontent>
207+
</frameworkcontent>

0 commit comments

Comments
 (0)