Skip to content

Update model card for Gemma #37674

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Apr 24, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
148 changes: 132 additions & 16 deletions docs/source/en/model_doc/gemma.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.

<!--Copyright 2025 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
Expand All @@ -14,31 +15,146 @@ rendered properly in your Markdown viewer.

-->

<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>

# Gemma

<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
[Gemma](https://huggingface.co/papers/2403.08295) is a family of lightweight language models with pretrained and instruction-tuned variants, available in 2B and 7B parameters. The architecture is based on a transformer decoder-only design. It features Multi-Query Attention, rotary positional embeddings (RoPE), GeGLU activation functions, and RMSNorm layer normalization.

The instruction-tuned variant was fine-tuned with supervised learning on instruction-following data, followed by reinforcement learning from human feedback (RLHF) to align the model outputs with human preferences.

You can find all the original Gemma checkpoints under the [Gemma](https://huggingface.co/collections/google/gemma-release-65d5efbccdbb8c4202ec078b) release.


> [!TIP]
> Click on the Gemma models in the right sidebar for more examples of how to apply Gemma to different language tasks.

The example below demonstrates how to generate text with [`Pipeline`] or the [`AutoModel`] class, and from the command line.

<hfoptions id="usage">
<hfoption id="Pipeline">

```py
import torch
from transformers import pipeline

pipeline = pipeline(
task="text-generation",
model="google/gemma-2b",
torch_dtype=torch.bfloat16,
device="cuda",
)

## Overview
pipeline("LLMs generate text through a process known as", max_new_tokens=50)
```

The Gemma model was proposed in [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) by Gemma Team, Google.
Gemma models are trained on 6T tokens, and released with 2 versions, 2b and 7b.
</hfoption>
<hfoption id="AutoModel">

The abstract from the paper is the following:
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

*This work introduces Gemma, a new family of open language models demonstrating strong performance across academic benchmarks for language understanding, reasoning, and safety. We release two sizes of models (2 billion and 7 billion parameters), and provide both pretrained and fine-tuned checkpoints. Gemma outperforms similarly sized open models on 11 out of 18 text-based tasks, and we present comprehensive evaluations of safety and responsibility aspects of the models, alongside a detailed description of our model development. We believe the responsible release of LLMs is critical for improving the safety of frontier models, and for enabling the next wave of LLM innovations*
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2b",
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="sdpa"
)

Tips:
input_text = "LLMs generate text through a process known as"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

- The original checkpoints can be converted using the conversion script `src/transformers/models/gemma/convert_gemma_weights_to_hf.py`
outputs = model.generate(**input_ids, max_new_tokens=50, cache_implementation="static")
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

This model was contributed by [Arthur Zucker](https://huggingface.co/ArthurZ), [Younes Belkada](https://huggingface.co/ybelkada), [Sanchit Gandhi](https://huggingface.co/sanchit-gandhi), [Pedro Cuenca](https://huggingface.co/pcuenq).
</hfoption>
<hfoption id="transformers-cli">

```bash
echo -e "LLMs generate text through a process known as" | transformers-cli run --task text-generation --model google/gemma-2b --device 0
```

</hfoption>
</hfoptions>

Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.

The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.

```py
#!pip install bitsandbytes
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4"
)
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-7b",
quantization_config=quantization_config,
device_map="auto",
attn_implementation="sdpa"
)

input_text = "LLMs generate text through a process known as."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(
**input_ids,
max_new_tokens=50,
cache_implementation="static"
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139) to better understand what tokens the model can and cannot attend to.

```py
from transformers.utils.attention_visualizer import AttentionMaskVisualizer

visualizer = AttentionMaskVisualizer("google/gemma-2b")
visualizer("LLMs generate text through a process known as")
```

<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/gemma-attn-mask.png"/>
</div>

## Notes

- The original Gemma models support standard kv-caching used in many transformer-based language models. You can use use the default [`DynamicCache`] instance or a tuple of tensors for past key values during generation. This makes it compatible with typical autoregressive generation workflows.

```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache

tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2b",
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="sdpa"
)
input_text = "LLMs generate text through a process known as"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
past_key_values = DynamicCache()
outputs = model.generate(**input_ids, max_new_tokens=50, past_key_values=past_key_values)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

## GemmaConfig

Expand Down