Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
53 changes: 53 additions & 0 deletions tests/test_activation_offloading.py
Original file line number Diff line number Diff line change
Expand Up @@ -154,3 +154,56 @@ def test_real_hf_model(self):
assert torch.allclose(out1, out2, rtol=1e-5)
for g1, g2 in zip(grads1, grads2):
assert torch.allclose(g1, g2, rtol=1e-5)

@require_torch_accelerator
def test_tensor_deduplication(self):
"""Test that deduplication works correctly for tensors sharing storage"""

class ModelWithViews(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(100, 100)

def forward(self, x):
out = self.linear(x)
view1 = out.view(-1)
view2 = out.transpose(0, 1)
return view1.sum() + view2.sum()

model = ModelWithViews().to(torch_device)
offload_ctx = OffloadActivations(min_offload_size=1)
offload_ctx.update_model_params(model)

x = torch.randn(10, 100, device=torch_device, requires_grad=True)
with offload_ctx:
loss = model(x)

total_tensor_ids = offload_ctx.tensor_id
assert total_tensor_ids > 0, "Should have created tensor IDs"

# modified=True means offloaded to CPU, modified=False means kept on GPU (deduplicated)
deduplicated_count = sum(1 for _, modified, _, _, _ in offload_ctx.tracker.values() if not modified)
offloaded_count = sum(1 for _, modified, _, _, _ in offload_ctx.tracker.values() if modified)

assert offloaded_count > 0, "Should have offloaded at least one tensor"
assert deduplicated_count > 0, "Should have deduplicated at least one tensor (view)"

unique_storages_offloaded = len(offload_ctx.storage_to_tensor_id)
assert unique_storages_offloaded < total_tensor_ids, (
f"Deduplication should result in fewer storages ({unique_storages_offloaded}) "
f"than total tensors ({total_tensor_ids})"
)

loss.backward()

@require_torch_accelerator
def test_parameter_filtering(self):
"""Test that model parameters are filtered during offloading"""
model = nn.Sequential(nn.Linear(10, 20), nn.Linear(20, 10)).to(torch_device)
offload_ctx = OffloadActivations()
offload_ctx.update_model_params(model)

assert len(offload_ctx.param_storages) > 0, "Should have tracked parameter storages"

param_ptrs = {p.data.untyped_storage().data_ptr() for p in model.parameters()}
assert offload_ctx.param_storages == param_ptrs, "Tracked storages should match parameter storages"
Loading
Loading