|
| 1 | +import seaborn as sns |
| 2 | +import plotly.express as px |
| 3 | +import pandas as pd |
| 4 | +import matplotlib.pyplot as plt |
| 5 | +import matplotlib.ticker as mticker |
| 6 | + |
| 7 | + |
| 8 | +DATA_PATH = "/mnt/team/rapidresponse/pub/population/modeling/climate_malnutrition/child_mortality/training_data/2025_09_15.01/data.parquet" |
| 9 | + |
| 10 | +df = pd.read_parquet(DATA_PATH) |
| 11 | + |
| 12 | +df["line_id"] = df["line_id"].astype(int) |
| 13 | + |
| 14 | +df["indv_id"] = df[["nid", "psu", "hh_id", "line_id"]].astype(str).agg("_".join, axis=1) |
| 15 | +print(f"{df['indv_id'].nunique():,} unique individuals in data") |
| 16 | + |
| 17 | +# flip child_alive so 1 = died, 0 = alive for easier interpretation |
| 18 | +df["child_mortality"] = 1 - df["child_alive"] |
| 19 | + |
| 20 | +# get unique individuals per year |
| 21 | +agg_yr = ( |
| 22 | + df.groupby(["int_year"])["indv_id"] |
| 23 | + .nunique() |
| 24 | + .reset_index() |
| 25 | + .rename(columns={"indv_id": "unique_individuals"}) |
| 26 | +) |
| 27 | +plt.figure(figsize=(20, 5)) |
| 28 | +ax = agg_yr.plot(x="int_year", y="unique_individuals", kind="bar") |
| 29 | +plt.title("Unique Individuals per Year") |
| 30 | +plt.xticks(fontsize=5, rotation=45, ha="right") |
| 31 | +ax.yaxis.set_major_formatter(mticker.FuncFormatter(lambda x, p: format(int(x), ","))) |
| 32 | +plt.tight_layout() |
| 33 | +plt.show() |
| 34 | + |
| 35 | +# get max age of children who did not die |
| 36 | +children_died_ids = df.query("child_alive == 0")["indv_id"].unique() |
| 37 | +children_alive = df.query("indv_id not in @children_died_ids") |
| 38 | +children_alive["age_month_original"] = children_alive["age_month_original"].astype(int) |
| 39 | +children_alive["over_5_at_survey"] = children_alive["age_month_original"] > 60 |
| 40 | +over5_at_survey = children_alive[children_alive["over_5_at_survey"]][ |
| 41 | + "indv_id" |
| 42 | +].nunique() |
| 43 | +under5_at_survey = children_alive[~children_alive["over_5_at_survey"]][ |
| 44 | + "indv_id" |
| 45 | +].nunique() |
| 46 | +print( |
| 47 | + f"{under5_at_survey:,} children out of {over5_at_survey + under5_at_survey:,} " |
| 48 | + f"who did not die were under 5 at survey ({under5_at_survey/(over5_at_survey + under5_at_survey):.1%})" |
| 49 | +) |
| 50 | + |
| 51 | +# Aggregate data |
| 52 | +agg_df = ( |
| 53 | + df.groupby(["nid", "ihme_loc_id", "int_year"], as_index=False) |
| 54 | + .mean(numeric_only=True) |
| 55 | + .rename( |
| 56 | + columns={ |
| 57 | + "ldipc_weighted_no_match": "consumption", |
| 58 | + "child_mortality": "total_mortality", |
| 59 | + } |
| 60 | + ) |
| 61 | +) |
| 62 | +px.scatter(agg_df, x="mean_temperature", y="total_mortality", color="ihme_loc_id") |
| 63 | + |
| 64 | + |
| 65 | +columns_to_bin = [ |
| 66 | + "mean_temperature", |
| 67 | + "total_precipitation", |
| 68 | + "relative_humidity", |
| 69 | + "mean_high_temperature", |
| 70 | + "mean_low_temperature", |
| 71 | + "precipitation_days", |
| 72 | + "days_over_30C", |
| 73 | + "days_over_26C", |
| 74 | +] |
| 75 | +heatmap_df = df.copy() # .query("ihme_loc_id == 'ETH'") |
| 76 | +for col in columns_to_bin: |
| 77 | + heatmap_df[f"{col}_bin"] = pd.qcut( |
| 78 | + heatmap_df[col], 10, retbins=False, duplicates="drop" |
| 79 | + ) |
| 80 | +heatmap_df["consumption"], ldi_bins = pd.qcut( |
| 81 | + heatmap_df.ldipc_weighted_no_match, 10, retbins=True |
| 82 | +) |
| 83 | +col = "days_over_30C" |
| 84 | +sns.heatmap( |
| 85 | + heatmap_df.groupby(["consumption", f"{col}_bin"])["child_mortality"] |
| 86 | + .mean() |
| 87 | + .unstack(), |
| 88 | + annot=True, |
| 89 | + fmt=".2f", |
| 90 | + cmap="YlOrBr", |
| 91 | +) |
| 92 | +col = "mean_temperature" |
| 93 | +sns.heatmap( |
| 94 | + heatmap_df.groupby(["consumption", f"{col}_bin"])["child_mortality"] |
| 95 | + .mean() |
| 96 | + .unstack(), |
| 97 | + annot=True, |
| 98 | + fmt=".2f", |
| 99 | + cmap="YlOrBr", |
| 100 | +) |
0 commit comments