Skip to content

iramat/iRamat

Repository files navigation

R-CMD-check Codecov test coverage CRAN status

iRamat

Tools for archaeometry and archaeometallurgy in R


Install from GitHub

# installinstall.packages("devtools")
devtools::install_github("iramat/iRamat")

Load the iRamat package

library(iRamat)

Using the Database API

Connect the database API with the default parameters, and show the first row, using the db_api_connect() function

df <- db_api_connect()

The default dataset is dataset_adisser17

names(df)
# [1] "dataset_adisser17"

The dataset can by accessed by its name:

head(df$dataset_adisser17, 2)
site_name id_chips sample_name typology na mg al si p s cl k ca mn fe loi ag arsenic ba be bi cd ce co cr cs cu dy er eu deltafe56 deltafe57 ga gd ge hf ho indium la li lu mo nb nd ni os os187_os188 os187_os186 pb pd pr rb ru sb sc se sm sn sr sr87_sr86 ta tb te th ti tl tm u v w y yb zn zr major_method major_analytical_setup trace_method trace_analytical_setup reference url
Aux Minières 4967 MINHAO108-A NA 0.04 0.03 3.23 4.45 0.04 0.00 0 0.07 0.09 0.03 53.17 7.90 NA 578.900 20.31 13.500 0.308 0.325 56.06 26.590 214.9 0.971 5.587 5.025 2.637 1.387 NA NA 7.478 4.960 2.61 1.431 0.938 0.475 21.24 NA 0.372 5.362 2.808 24.37 63.140 NA NA NA 113.8444 NA 6.119 4.692 NA 127.50 1.342 NA 6.095 0.945 43.73 NA 0.227 0.843 NA 17.38 0.092 NA 0.397 9.352 857.3 0.563 22.17 2.776 112.60 58.04 ICP-OES CRPG - Thermo Fisher Scientific Icap 6500 ICP-OES CRPG - Thermo Fisher Scientific Icap 6500 Alexandre Disser, Philippe Dillmann, Marc Leroy, Maxime L'Héritier, Sylvain Bauvais, Philippe Fluzin (2017), Iron Supply for the Building of Metz Cathedral: New Methodological Development for Provenance Studies and Historical Considerations, Archaeometry, 59 https://onlinelibrary.wiley.com/doi/full/10.1111/arcm.12265

Chronology

Site timelines

The chrono() function models the chronological attribution of the site by creating a timeline:

df <- db_api_connect()
chrono(d = df$dataset_adisser17)

img-name

PeriodO timelines

PeriodO periods can also be displayed. The default Periodo authority (i.e. a set of different periods identified by the same author) is INRAP: Institut National de Recherches Archeologiques Preventive.

periodo(min_date = -700, max_date = 0, use_periodo = TRUE, time_match = 1)

img-name

Sites and PeriodO timelines

Site and PeriodO timelines can be merged into a single plot:

df <- db_api_connect()
plots <- chrono(df$dataset_adisser17, use_periodo = TRUE)
ggpubr::ggarrange(plots$sites, plots$periodo$periodo,
                  heights = c(1, 2), ncol = 1, align = "v")

img-name

Point Pattern and spatial analysis

Point Pattern Analysis

The ppa() function performs different point pattern analysis (PPA) on raster grids or spatial data. It could be used to assess if a point distribution is regular, clustered or random.

regular clustered random

Run the function with its default parameters:

d <- ppa()

d is a hash-like object (similar to a Python dictionary) that stores different test outputs: Quadrat test, K-Ripley test, G-function test. Let's call some of these results:

Quadrat test

Check the Quadrat test of the clustered distribution

d[["clustered_distribution.png"]]$quadrat
	Chi-squared test of CSR using quadrat counts

data:  pp
X2 = 732.01, df = 24, p-value < 2.2e-16
alternative hypothesis: two.sided

Quadrats: 5 by 5 grid of tiles

K-Ripley test

plot(d[["clustered_distribution.png"]]$ripley, main = "clustered distribution")

img-name

G-function test

plot(d[['regular_distribution.png']]$gfunction, main = "regular distribution")

img-name

About

R package development

Topics

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages