Skip to content

Commit 293ed9e

Browse files
committed
Fix bugs and add xps.
1 parent 87e9da8 commit 293ed9e

File tree

4 files changed

+59
-5
lines changed

4 files changed

+59
-5
lines changed

README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -12,12 +12,12 @@ A Python package for graph kernels, graph edit distances and graph pre-image pro
1212
* python>=3.5
1313
* numpy>=1.16.2
1414
* scipy>=1.1.0
15-
* matplotlib>=3.0.0
15+
* matplotlib>=3.1.0
1616
* networkx>=2.2
1717
* scikit-learn>=0.20.0
1818
* tabulate>=0.8.2
1919
* tqdm>=4.26.0
20-
* control==0.8.0 (for generalized random walk kernels only)
20+
* control>=0.8.2 (for generalized random walk kernels only)
2121
* slycot==0.3.3 (for generalized random walk kernels only, which requires a fortran compiler, gfortran for example)
2222

2323
## How to use?
Lines changed: 54 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,54 @@
1+
#!/usr/bin/env python3
2+
# -*- coding: utf-8 -*-
3+
"""
4+
Created on Mon Sep 21 10:34:26 2020
5+
6+
@author: ljia
7+
"""
8+
from utils import Graph_Kernel_List_ESym, compute_graph_kernel
9+
10+
11+
def generate_graphs(num_el_alp):
12+
from gklearn.utils.graph_synthesizer import GraphSynthesizer
13+
gsyzer = GraphSynthesizer()
14+
graphs = gsyzer.unified_graphs(num_graphs=100, num_nodes=20, num_edges=40, num_node_labels=0, num_edge_labels=num_el_alp, seed=None, directed=False)
15+
return graphs
16+
17+
18+
def xp_synthesied_graphs_num_edge_label_alphabet():
19+
20+
# Run and save.
21+
import pickle
22+
import os
23+
save_dir = 'outputs/synthesized_graphs_num_edge_label_alphabet/'
24+
if not os.path.exists(save_dir):
25+
os.makedirs(save_dir)
26+
27+
run_times = {}
28+
29+
for kernel_name in Graph_Kernel_List_ESym:
30+
print()
31+
print('Kernel:', kernel_name)
32+
33+
run_times[kernel_name] = []
34+
for num_el_alp in [0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40]:
35+
print()
36+
print('Number of edge label alphabet:', num_el_alp)
37+
38+
# Generate graphs.
39+
graphs = generate_graphs(num_el_alp)
40+
41+
# Compute Gram matrix.
42+
gram_matrix, run_time = compute_graph_kernel(graphs, kernel_name)
43+
run_times[kernel_name].append(run_time)
44+
45+
pickle.dump(run_times, open(save_dir + 'run_time.' + kernel_name + '.' + str(num_el_alp) + '.pkl', 'wb'))
46+
47+
# Save all.
48+
pickle.dump(run_times, open(save_dir + 'run_times.pkl', 'wb'))
49+
50+
return
51+
52+
53+
if __name__ == '__main__':
54+
xp_synthesied_graphs_num_edge_label_alphabet()

gklearn/experiments/papers/PRL_2020/synthesized_graphs_num_nl.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,7 @@ def xp_synthesied_graphs_num_node_label_alphabet():
3131
print('Kernel:', kernel_name)
3232

3333
run_times[kernel_name] = []
34-
for num_nl_alp in [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20]: # [0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40]:
34+
for num_nl_alp in [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20]:
3535
print()
3636
print('Number of node label alphabet:', num_nl_alp)
3737

gklearn/utils/graph_synthesizer.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -29,9 +29,9 @@ def random_graph(self, num_nodes, num_edges, num_node_labels=0, num_edge_labels=
2929

3030
if num_edge_labels > 0:
3131
edge_labels = np.random.randint(0, high=num_edge_labels, size=num_edges)
32-
for i in random.sample(range(0, max_num_edges), num_edges):
32+
for idx, i in enumerate(random.sample(range(0, max_num_edges), num_edges)):
3333
node1, node2 = all_edges[i]
34-
g.add_edge(str(node1), str(node2), bond_type=edge_labels[i]) # @todo: update "bond_type".
34+
g.add_edge(str(node1), str(node2), bond_type=edge_labels[idx]) # @todo: update "bond_type".
3535
else:
3636
for i in random.sample(range(0, max_num_edges), num_edges):
3737
node1, node2 = all_edges[i]

0 commit comments

Comments
 (0)