|
| 1 | +# sometimes I call this script generate_fake_data.py |
| 2 | +import os |
| 3 | +import random |
| 4 | +from typing import Tuple |
| 5 | +from pathlib import Path |
| 6 | + |
| 7 | +import cv2 |
| 8 | +import numpy as np |
| 9 | +import pandas as pd |
| 10 | +from faker import Faker |
| 11 | + |
| 12 | + |
| 13 | +def generate_fake_data() -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]: |
| 14 | + |
| 15 | + current_dir = os.path.dirname(os.path.realpath(__file__)) |
| 16 | + |
| 17 | + # Set seed for reproducibility |
| 18 | + random.seed(42) |
| 19 | + |
| 20 | + Faker.seed(42) |
| 21 | + |
| 22 | + num_rows = 64 + 16 + 16 |
| 23 | + |
| 24 | + # Generate random categorical data |
| 25 | + categories = ["category_A", "category_B", "category_C"] |
| 26 | + |
| 27 | + cat_col = [random.choice(categories) for _ in range(num_rows)] |
| 28 | + |
| 29 | + # Generate random numerical data |
| 30 | + num_col = [np.random.rand() for _ in range(num_rows)] |
| 31 | + |
| 32 | + # Generate random sentences |
| 33 | + fake = Faker() |
| 34 | + text_col1 = [fake.sentence() for _ in range(num_rows)] |
| 35 | + text_col2 = [fake.sentence() for _ in range(num_rows)] |
| 36 | + |
| 37 | + # Generate the image data |
| 38 | + img_folder = "images" |
| 39 | + |
| 40 | + img_path = "/".join([current_dir, "load_from_folder_test_data", img_folder]) |
| 41 | + |
| 42 | + if not os.path.exists(img_path): |
| 43 | + os.makedirs(img_path) |
| 44 | + |
| 45 | + for i in range(num_rows): |
| 46 | + image = np.random.randint(0, 256, (16, 16, 3), dtype="uint8") |
| 47 | + image_name = "image_set1_{}.png".format(i) |
| 48 | + cv2.imwrite("/".join([img_path, image_name]), image) |
| 49 | + |
| 50 | + image = np.random.randint(0, 256, (16, 16, 3), dtype="uint8") |
| 51 | + image_name = "image_set2_{}.png".format(i) |
| 52 | + cv2.imwrite("/".join([img_path, image_name]), image) |
| 53 | + |
| 54 | + # Generate fake target values |
| 55 | + target = [random.choice([0, 1]) for _ in range(num_rows)] |
| 56 | + |
| 57 | + # Create DataFrame |
| 58 | + data = { |
| 59 | + "cat_col": cat_col, |
| 60 | + "num_col": num_col, |
| 61 | + "text_col1": text_col1, |
| 62 | + "text_col2": text_col2, |
| 63 | + "image_col1": ["image_set1_{}.png".format(i) for i in range(num_rows)], |
| 64 | + "image_col2": ["image_set2_{}.png".format(i) for i in range(num_rows)], |
| 65 | + "target": target, |
| 66 | + } |
| 67 | + |
| 68 | + df = pd.DataFrame(data) |
| 69 | + |
| 70 | + save_dir = Path(current_dir) / "load_from_folder_test_data" |
| 71 | + |
| 72 | + if not save_dir.exists(): |
| 73 | + save_dir.mkdir(parents=True) |
| 74 | + |
| 75 | + train_df = df.iloc[:64] |
| 76 | + val_df = df.iloc[64:80] |
| 77 | + test_df = df.iloc[80:] |
| 78 | + |
| 79 | + train_df.to_csv(save_dir / "train.csv", index=False) |
| 80 | + val_df.to_csv(save_dir / "val.csv", index=False) |
| 81 | + test_df.to_csv(save_dir / "test.csv", index=False) |
| 82 | + |
| 83 | + print("Dataset and images created and saved successfully.") |
| 84 | + |
| 85 | + return train_df, val_df, test_df |
| 86 | + |
| 87 | + |
| 88 | +def generate_fake_data_for_mutil_tabular_components() -> ( |
| 89 | + Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame] |
| 90 | +): |
| 91 | + |
| 92 | + current_dir = os.path.dirname(os.path.realpath(__file__)) |
| 93 | + save_dir = Path(current_dir) / "data_for_muti_tabular_components" |
| 94 | + |
| 95 | + if not save_dir.exists(): |
| 96 | + save_dir.mkdir(parents=True) |
| 97 | + |
| 98 | + fake = Faker() |
| 99 | + |
| 100 | + random.seed(42) |
| 101 | + np.random.seed(42) |
| 102 | + |
| 103 | + # Create User Features DataFrame |
| 104 | + user_ids = range(1, 33) |
| 105 | + ages = np.random.randint(18, 65, size=32) |
| 106 | + genders = np.random.choice(["male", "female"], size=32) |
| 107 | + locations = np.random.choice(["location_a", "location_b", "location_c"], size=32) |
| 108 | + reviews = [fake.sentence(nb_words=10) for _ in range(32)] |
| 109 | + |
| 110 | + user_features = pd.DataFrame( |
| 111 | + { |
| 112 | + "id": user_ids, |
| 113 | + "age": ages, |
| 114 | + "gender": genders, |
| 115 | + "location": locations, |
| 116 | + "review": reviews, |
| 117 | + } |
| 118 | + ) |
| 119 | + |
| 120 | + # Create Item Features DataFrame |
| 121 | + item_ids = range(1, 33) |
| 122 | + prices = np.round(np.random.uniform(10, 1000, size=32), 2) |
| 123 | + colors = np.random.choice(["red", "blue", "green", "yellow"], size=32) |
| 124 | + categories = np.random.choice(["category_1", "category_2", "category_3"], size=32) |
| 125 | + descriptions = [fake.sentence(nb_words=10) for _ in range(32)] |
| 126 | + |
| 127 | + item_features = pd.DataFrame( |
| 128 | + { |
| 129 | + "id": item_ids, |
| 130 | + "price": prices, |
| 131 | + "color": colors, |
| 132 | + "category": categories, |
| 133 | + "description": descriptions, |
| 134 | + } |
| 135 | + ) |
| 136 | + |
| 137 | + # Create Interaction DataFrame |
| 138 | + interaction_data = [] |
| 139 | + for _ in range(1000): # maybe 1000 interactions is too much for a test |
| 140 | + user_id = random.choice(user_ids) |
| 141 | + item_id = random.choice(item_ids) |
| 142 | + purchased = random.choice([0, 1]) |
| 143 | + interaction_data.append([user_id, item_id, purchased]) |
| 144 | + |
| 145 | + interactions = pd.DataFrame( |
| 146 | + interaction_data, columns=["user_id", "item_id", "purchased"] |
| 147 | + ) |
| 148 | + |
| 149 | + user_item_purchased_df = interactions.merge( |
| 150 | + user_features, left_on="user_id", right_on="id" |
| 151 | + ).merge(item_features, left_on="item_id", right_on="id") |
| 152 | + |
| 153 | + train_df = user_item_purchased_df.iloc[:800] |
| 154 | + val_df = user_item_purchased_df.iloc[800:900] |
| 155 | + test_df = user_item_purchased_df.iloc[900:] |
| 156 | + |
| 157 | + train_df.to_csv(save_dir / "train.csv", index=False) |
| 158 | + val_df.to_csv(save_dir / "val.csv", index=False) |
| 159 | + test_df.to_csv(save_dir / "test.csv", index=False) |
| 160 | + |
| 161 | + return train_df, val_df, test_df |
| 162 | + |
| 163 | + |
| 164 | +if __name__ == "__main__": |
| 165 | + # _, _, _ = generate_fake_data() |
| 166 | + _, _, _ = generate_fake_data_for_mutil_tabular_components() |
0 commit comments