12
12
[ ![ Maintenance] ( https://img.shields.io/badge/Maintained%3F-yes-green.svg )] ( https://github.com/jrzaurin/pytorch-widedeep/graphs/commit-activity )
13
13
[ ![ contributions welcome] ( https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat )] ( https://github.com/jrzaurin/pytorch-widedeep/issues )
14
14
[ ![ Slack] ( https://img.shields.io/badge/slack-chat-green.svg?logo=slack )] ( https://join.slack.com/t/pytorch-widedeep/shared_invite/zt-soss7stf-iXpVuLeKZz8lGTnxxtHtTw )
15
+ [ ![ DOI] ( https://joss.theoj.org/papers/10.21105/joss.05027/status.svg )] ( https://doi.org/10.21105/joss.05027 )
15
16
16
17
# pytorch-widedeep
17
18
@@ -38,6 +39,9 @@ The content of this document is organized as follows:
38
39
- [ How to Contribute] ( #how-to-contribute )
39
40
- [ Acknowledgments] ( #acknowledgments )
40
41
- [ License] ( #license )
42
+ - [ Cite] ( #cite )
43
+ - [ BibTex] ( #bibtex )
44
+ - [ APA] ( #apa )
41
45
42
46
### Introduction
43
47
@@ -82,7 +86,7 @@ without a ``deephead`` component can be formulated as:
82
86
83
87
84
88
Where &sigma ; is the sigmoid function, * 'W'* are the weight matrices applied to the wide model and to the final
85
- activations of the deep models, * 'a'* are these final activations,
89
+ activations of the deep models, * 'a'* are these final activations,
86
90
&phi ; (x) are the cross product transformations of the original features * 'x'* , and
87
91
, and * 'b'* is the bias term.
88
92
In case you are wondering what are * "cross product transformations"* , here is
@@ -331,4 +335,31 @@ Vision](https://www.pyimagesearch.com/deep-learning-computer-vision-python-book/
331
335
This work is dual-licensed under Apache 2.0 and MIT (or any later version).
332
336
You can choose between one of them if you use this work.
333
337
334
- ` SPDX-License-Identifier: Apache-2.0 AND MIT `
338
+ ` SPDX-License-Identifier: Apache-2.0 AND MIT `
339
+
340
+ ### Cite
341
+
342
+ #### BibTex
343
+
344
+ ```
345
+ @article{Zaurin_pytorch-widedeep_A_flexible_2023,
346
+ author = {Zaurin, Javier Rodriguez and Mulinka, Pavol},
347
+ doi = {10.21105/joss.05027},
348
+ journal = {Journal of Open Source Software},
349
+ month = jun,
350
+ number = {86},
351
+ pages = {5027},
352
+ title = {{pytorch-widedeep: A flexible package for multimodal deep learning}},
353
+ url = {https://joss.theoj.org/papers/10.21105/joss.05027},
354
+ volume = {8},
355
+ year = {2023}
356
+ }
357
+ ```
358
+
359
+ #### APA
360
+
361
+ ```
362
+ Zaurin, J. R., & Mulinka, P. (2023). pytorch-widedeep: A flexible package for
363
+ multimodal deep learning. Journal of Open Source Software, 8(86), 5027.
364
+ https://doi.org/10.21105/joss.05027
365
+ ```
0 commit comments