@@ -313,34 +313,34 @@ section
313313variable (R₁ M₁)
314314
315315/-- the identity map as a continuous linear map. -/
316- def id : M₁ →L[R₁] M₁ :=
316+ protected def id : M₁ →L[R₁] M₁ :=
317317 ⟨LinearMap.id, continuous_id⟩
318318
319319end
320320
321321instance one : One (M₁ →L[R₁] M₁) :=
322- ⟨id R₁ M₁⟩
322+ ⟨. id R₁ M₁⟩
323323
324- theorem one_def : (1 : M₁ →L[R₁] M₁) = id R₁ M₁ :=
324+ theorem one_def : (1 : M₁ →L[R₁] M₁) = . id R₁ M₁ :=
325325 rfl
326326
327- theorem id_apply (x : M₁) : id R₁ M₁ x = x :=
327+ theorem id_apply (x : M₁) : ContinuousLinearMap. id R₁ M₁ x = x :=
328328 rfl
329329
330330@[simp, norm_cast]
331- theorem coe_id : (id R₁ M₁ : M₁ →ₗ[R₁] M₁) = LinearMap.id :=
331+ theorem coe_id : (ContinuousLinearMap. id R₁ M₁ : M₁ →ₗ[R₁] M₁) = LinearMap.id :=
332332 rfl
333333
334334@[simp, norm_cast]
335- theorem coe_id' : ⇑(id R₁ M₁) = _root_. id :=
335+ theorem coe_id' : ⇑(ContinuousLinearMap. id R₁ M₁) = id :=
336336 rfl
337337
338338@[simp, norm_cast]
339339theorem toContinuousAddMonoidHom_id :
340- (id R₁ M₁ : ContinuousAddMonoidHom M₁ M₁) = .id _ := rfl
340+ (ContinuousLinearMap. id R₁ M₁ : ContinuousAddMonoidHom M₁ M₁) = .id _ := rfl
341341
342342@[simp, norm_cast]
343- theorem coe_eq_id {f : M₁ →L[R₁] M₁} : (f : M₁ →ₗ[R₁] M₁) = LinearMap.id ↔ f = id _ _ := by
343+ theorem coe_eq_id {f : M₁ →L[R₁] M₁} : (f : M₁ →ₗ[R₁] M₁) = LinearMap.id ↔ f = . id _ _ := by
344344 rw [← coe_id, coe_inj]
345345
346346@[simp]
@@ -441,11 +441,11 @@ theorem comp_apply (g : M₂ →SL[σ₂₃] M₃) (f : M₁ →SL[σ₁₂] M
441441 rfl
442442
443443@[simp]
444- theorem comp_id (f : M₁ →SL[σ₁₂] M₂) : f.comp (id R₁ M₁) = f :=
444+ theorem comp_id (f : M₁ →SL[σ₁₂] M₂) : f.comp (. id R₁ M₁) = f :=
445445 ext fun _x => rfl
446446
447447@[simp]
448- theorem id_comp (f : M₁ →SL[σ₁₂] M₂) : (id R₂ M₂).comp f = f :=
448+ theorem id_comp (f : M₁ →SL[σ₁₂] M₂) : (ContinuousLinearMap. id R₂ M₂).comp f = f :=
449449 ext fun _x => rfl
450450
451451section
@@ -887,7 +887,7 @@ variable {σ₂₁ : R₂ →+* R} [RingHomInvPair σ₁₂ σ₂₁]
887887`LinearMap.range f₂`. -/
888888def projKerOfRightInverse [IsTopologicalAddGroup M] (f₁ : M →SL[σ₁₂] M₂) (f₂ : M₂ →SL[σ₂₁] M)
889889 (h : Function.RightInverse f₂ f₁) : M →L[R] LinearMap.ker f₁ :=
890- (id R M - f₂.comp f₁).codRestrict (LinearMap.ker f₁) fun x => by simp [h (f₁ x)]
890+ (. id R M - f₂.comp f₁).codRestrict (LinearMap.ker f₁) fun x => by simp [h (f₁ x)]
891891
892892@[simp]
893893theorem coe_projKerOfRightInverse_apply [IsTopologicalAddGroup M] (f₁ : M →SL[σ₁₂] M₂)
@@ -1141,7 +1141,8 @@ theorem ClosedComplemented.exists_isClosed_isCompl {p : Submodule R M} [T1Space
11411141protected theorem ClosedComplemented.isClosed [IsTopologicalAddGroup M] [T1Space M]
11421142 {p : Submodule R M} (h : ClosedComplemented p) : IsClosed (p : Set M) := by
11431143 rcases h with ⟨f, hf⟩
1144- have : ker (id R M - p.subtypeL.comp f) = p := LinearMap.ker_id_sub_eq_of_proj hf
1144+ have : ker (ContinuousLinearMap.id R M - p.subtypeL.comp f) = p :=
1145+ LinearMap.ker_id_sub_eq_of_proj hf
11451146 exact this ▸ isClosed_ker _
11461147
11471148@[simp]
@@ -1150,7 +1151,8 @@ theorem closedComplemented_bot : ClosedComplemented (⊥ : Submodule R M) :=
11501151
11511152@[simp]
11521153theorem closedComplemented_top : ClosedComplemented (⊤ : Submodule R M) :=
1153- ⟨(id R M).codRestrict ⊤ fun _x => trivial, fun x => Subtype.ext_iff.2 <| by simp⟩
1154+ ⟨(ContinuousLinearMap.id R M).codRestrict ⊤ fun _x => trivial,
1155+ fun x => Subtype.ext_iff.2 <| by simp⟩
11541156
11551157end Submodule
11561158
0 commit comments