|
| 1 | +// Copyright TriAxis Games, L.L.C. & xixgames All Rights Reserved. |
| 2 | + |
| 3 | +#include "RealtimeMeshBranchingLinesActor.h" |
| 4 | + |
| 5 | +#include "RealtimeMeshSimple.h" |
| 6 | + |
| 7 | +ARealtimeMeshBranchingLinesActor::ARealtimeMeshBranchingLinesActor() |
| 8 | +{ |
| 9 | + PrimaryActorTick.bCanEverTick = false; |
| 10 | +} |
| 11 | + |
| 12 | +void ARealtimeMeshBranchingLinesActor::OnGenerateMesh_Implementation() |
| 13 | +{ |
| 14 | + // Initialize to a simple mesh, this behaves the most like a ProceduralMeshComponent |
| 15 | + // Where you can set the mesh data and forget about it. |
| 16 | + URealtimeMeshSimple* RealtimeMesh = GetRealtimeMeshComponent()->InitializeRealtimeMesh<URealtimeMeshSimple>(); |
| 17 | + |
| 18 | + // The most important part of the mesh data is the StreamSet, it contains the individual buffers, |
| 19 | + // like position, tangents, texcoords, triangles etc. |
| 20 | + FRealtimeMeshStreamSet StreamSet; |
| 21 | + |
| 22 | + // For this example we'll use a helper class to build the mesh data |
| 23 | + // You can make your own helpers or skip them and use individual TRealtimeMeshStreamBuilder, |
| 24 | + // or skip them entirely and copy data directly into the streams |
| 25 | + TRealtimeMeshBuilderLocal<uint16, FPackedNormal, FVector2DHalf, 1> Builder(StreamSet); |
| 26 | + |
| 27 | + // here we go ahead and enable all the basic mesh data parts |
| 28 | + Builder.EnableTangents(); |
| 29 | + Builder.EnableTexCoords(); |
| 30 | + Builder.EnableColors(); // TODO |
| 31 | + |
| 32 | + // Poly groups allow us to easily create a single set of buffers with multiple sections by adding an index to the triangle data |
| 33 | + Builder.EnablePolyGroups(); |
| 34 | + |
| 35 | + // CUSTOM BUILD OF THE BRANCHES |
| 36 | + PreCacheCrossSection(); |
| 37 | + GenerateMesh(Builder); |
| 38 | + |
| 39 | + // Setup the two material slots |
| 40 | + RealtimeMesh->SetupMaterialSlot(0, "PrimaryMaterial", Material); |
| 41 | + //RealtimeMesh->SetupMaterialSlot(1, "SecondaryMaterial"); |
| 42 | + |
| 43 | + // Now create the group key. This is a unique identifier for the section group |
| 44 | + // A section group contains one or more sections that all share the underlying buffers |
| 45 | + // these sections can overlap the used vertex/index ranges depending on use case. |
| 46 | + const FRealtimeMeshSectionGroupKey GroupKey = FRealtimeMeshSectionGroupKey::Create(0, FName("TestTriangle")); |
| 47 | + |
| 48 | + // Now create the section key, this is a unique identifier for a section within a group |
| 49 | + // The section contains the configuration for the section, like the material slot, |
| 50 | + // and the draw type, as well as the range of the index/vertex buffers to use to render. |
| 51 | + // Here we're using the version to create the key based on the PolyGroup index |
| 52 | + const FRealtimeMeshSectionKey PolyGroup0SectionKey = FRealtimeMeshSectionKey::CreateForPolyGroup(GroupKey, 0); |
| 53 | + //const FRealtimeMeshSectionKey PolyGroup1SectionKey = FRealtimeMeshSectionKey::CreateForPolyGroup(GroupKey, 1); |
| 54 | + |
| 55 | + // Now we create the section group, since the stream set has polygroups, this will create the sections as well |
| 56 | + RealtimeMesh->CreateSectionGroup(GroupKey, StreamSet); |
| 57 | + |
| 58 | + // Update the configuration of both the polygroup sections. |
| 59 | + RealtimeMesh->UpdateSectionConfig(PolyGroup0SectionKey, FRealtimeMeshSectionConfig(ERealtimeMeshSectionDrawType::Static, 0)); |
| 60 | + //RealtimeMesh->UpdateSectionConfig(PolyGroup1SectionKey, FRealtimeMeshSectionConfig(ERealtimeMeshSectionDrawType::Static, 1)); |
| 61 | + |
| 62 | + Super::OnGenerateMesh_Implementation(); |
| 63 | +} |
| 64 | + |
| 65 | +void ARealtimeMeshBranchingLinesActor::GenerateMesh(RealtimeMesh::TRealtimeMeshBuilderLocal<uint16, FPackedNormal, FVector2DHalf, 1>& Builder) |
| 66 | +{ |
| 67 | + // ------------------------------------------------------- |
| 68 | + // Setup the random number generator and create the branching structure |
| 69 | + RngStream.Initialize(RandomSeed); |
| 70 | + CreateSegments(); |
| 71 | + |
| 72 | + // ------------------------------------------------------- |
| 73 | + // Now lets loop through all the defined segments and create a cylinder for each |
| 74 | + for (int32 i = 0; i < Segments.Num(); i++) |
| 75 | + { |
| 76 | + GenerateCylinder(Segments[i].Start, Segments[i].End, Segments[i].Width, |
| 77 | + RadialSegmentCount, Builder, bSmoothNormals); |
| 78 | + } |
| 79 | +} |
| 80 | + |
| 81 | +FVector ARealtimeMeshBranchingLinesActor::RotatePointAroundPivot(const FVector& InPoint, const FVector& InPivot, const FVector& InAngles) |
| 82 | +{ |
| 83 | + FVector Direction = InPoint - InPivot; // get point direction relative to pivot |
| 84 | + Direction = FQuat::MakeFromEuler(InAngles) * Direction; // rotate it |
| 85 | + return Direction + InPivot; // calculate rotated point |
| 86 | +} |
| 87 | + |
| 88 | +void ARealtimeMeshBranchingLinesActor::PreCacheCrossSection() |
| 89 | +{ |
| 90 | + if (LastCachedCrossSectionCount == RadialSegmentCount) |
| 91 | + { |
| 92 | + return; |
| 93 | + } |
| 94 | + |
| 95 | + // Generate a cross-section for use in cylinder generation |
| 96 | + const float AngleBetweenQuads = (2.0f / static_cast<float>(RadialSegmentCount)) * PI; |
| 97 | + CachedCrossSectionPoints.Empty(); |
| 98 | + |
| 99 | + // Pre-calculate cross section points of a circle, two more than needed |
| 100 | + for (int32 PointIndex = 0; PointIndex < (RadialSegmentCount + 2); PointIndex++) |
| 101 | + { |
| 102 | + const float Angle = static_cast<float>(PointIndex) * AngleBetweenQuads; |
| 103 | + CachedCrossSectionPoints.Add(FVector(FMath::Cos(Angle), FMath::Sin(Angle), 0)); |
| 104 | + } |
| 105 | + |
| 106 | + LastCachedCrossSectionCount = RadialSegmentCount; |
| 107 | +} |
| 108 | + |
| 109 | +void ARealtimeMeshBranchingLinesActor::CreateSegments() |
| 110 | +{ |
| 111 | + // We create the branching structure by constantly subdividing a line between two points by creating a new point in the middle. |
| 112 | + // We then take that point and offset it in a random direction, by a random amount defined within limits. |
| 113 | + // Next we take both of the newly created line halves, and subdivide them the same way. |
| 114 | + // Each new midpoint also has a chance to create a new branch |
| 115 | + // TODO This should really be recursive |
| 116 | + Segments.Empty(); |
| 117 | + float CurrentBranchOffset = MaxBranchOffset; |
| 118 | + |
| 119 | + if (bMaxBranchOffsetAsPercentageOfLength) |
| 120 | + { |
| 121 | + CurrentBranchOffset = (Start - End).Size() * (FMath::Clamp(MaxBranchOffset, 0.1f, 100.0f) / 100.0f); |
| 122 | + } |
| 123 | + |
| 124 | + // Pre-calc a few floats from percentages |
| 125 | + const float ChangeOfFork = FMath::Clamp(ChanceOfForkPercentage, 0.0f, 100.0f) / 100.0f; |
| 126 | + const float BranchOffsetReductionEachGeneration = FMath::Clamp(BranchOffsetReductionEachGenerationPercentage, 0.0f, 100.0f) / 100.0f; |
| 127 | + |
| 128 | + // Add the first segment which is simply between the start and end points |
| 129 | + Segments.Add(FRealtimeMeshBranchSegment(Start, End, TrunkWidth)); |
| 130 | + |
| 131 | + for (int32 iGen = 0; iGen < Iterations; iGen++) |
| 132 | + { |
| 133 | + TArray<FRealtimeMeshBranchSegment> NewGen; |
| 134 | + |
| 135 | + for (const FRealtimeMeshBranchSegment& EachSegment : Segments) |
| 136 | + { |
| 137 | + FVector Midpoint = (EachSegment.End + EachSegment.Start) / 2; |
| 138 | + |
| 139 | + // Offset the midpoint by a random number along the normal |
| 140 | + const FVector Normal = FVector::CrossProduct(EachSegment.End - EachSegment.Start, OffsetDirections[RngStream.RandRange(0, 1)]).GetSafeNormal(); |
| 141 | + Midpoint += Normal * RngStream.RandRange(-CurrentBranchOffset, CurrentBranchOffset); |
| 142 | + |
| 143 | + // Create two new segments |
| 144 | + NewGen.Add(FRealtimeMeshBranchSegment(EachSegment.Start, Midpoint, EachSegment.Width, EachSegment.ForkGeneration)); |
| 145 | + NewGen.Add(FRealtimeMeshBranchSegment(Midpoint, EachSegment.End, EachSegment.Width, EachSegment.ForkGeneration)); |
| 146 | + |
| 147 | + // Chance of fork? |
| 148 | + if (RngStream.FRand() > (1 - ChangeOfFork)) |
| 149 | + { |
| 150 | + // TODO Normalize the direction vector and calculate a new total length and then subdiv that for X generations |
| 151 | + const FVector Direction = Midpoint - EachSegment.Start; |
| 152 | + const FVector SplitEnd = (Direction * RngStream.FRandRange(ForkLengthMin, ForkLengthMax)).RotateAngleAxis(RngStream.FRandRange(ForkRotationMin, ForkRotationMax), OffsetDirections[RngStream.RandRange(0, 1)]) + Midpoint; |
| 153 | + NewGen.Add(FRealtimeMeshBranchSegment(Midpoint, SplitEnd, EachSegment.Width * WidthReductionOnFork, EachSegment.ForkGeneration + 1)); |
| 154 | + } |
| 155 | + } |
| 156 | + |
| 157 | + Segments.Empty(); |
| 158 | + Segments = NewGen; |
| 159 | + |
| 160 | + // Reduce the offset slightly each generation |
| 161 | + CurrentBranchOffset = CurrentBranchOffset * BranchOffsetReductionEachGeneration; |
| 162 | + } |
| 163 | +} |
| 164 | + |
| 165 | +void ARealtimeMeshBranchingLinesActor::GenerateCylinder(const FVector& StartPoint, const FVector& EndPoint, const float InWidth, |
| 166 | + const int32 InCrossSectionCount, TRealtimeMeshBuilderLocal<uint16, FPackedNormal, FVector2DHalf, 1>& Builder, |
| 167 | + const bool bInSmoothNormals/* = true*/) |
| 168 | +{ |
| 169 | + // Make a cylinder section |
| 170 | + const float AngleBetweenQuads = (2.0f / static_cast<float>(InCrossSectionCount)) * PI; |
| 171 | + const float UMapPerQuad = 1.0f / static_cast<float>(InCrossSectionCount); |
| 172 | + |
| 173 | + const FVector StartOffset = StartPoint - FVector(0, 0, 0); |
| 174 | + const FVector Offset = EndPoint - StartPoint; |
| 175 | + |
| 176 | + // Find angle between vectors |
| 177 | + const FVector LineDirection = (StartPoint - EndPoint).GetSafeNormal(); |
| 178 | + const FVector RotationAngle = LineDirection.Rotation().Add(90.f, 0.f, 0.f).Euler(); |
| 179 | + |
| 180 | + // Start by building up vertices that make up the cylinder sides |
| 181 | + for (int32 QuadIndex = 0; QuadIndex < InCrossSectionCount; QuadIndex++) |
| 182 | + { |
| 183 | + // Set up the vertices |
| 184 | + FVector P0 = (CachedCrossSectionPoints[QuadIndex] * InWidth) + StartOffset; |
| 185 | + P0 = RotatePointAroundPivot(P0, StartPoint, RotationAngle); |
| 186 | + FVector P1 = CachedCrossSectionPoints[QuadIndex + 1] * InWidth + StartOffset; |
| 187 | + P1 = RotatePointAroundPivot(P1, StartPoint, RotationAngle); |
| 188 | + const FVector P2 = P1 + Offset; |
| 189 | + const FVector P3 = P0 + Offset; |
| 190 | + |
| 191 | + // Normals |
| 192 | + const FVector NormalCurrent = FVector::CrossProduct(P0 - P3, P1 - P3).GetSafeNormal(); |
| 193 | + FVector NormalNext, NormalPrevious, AverageNormalRight, AverageNormalLeft; |
| 194 | + if (bInSmoothNormals) |
| 195 | + { |
| 196 | + FVector P4 = (CachedCrossSectionPoints[QuadIndex + 2] * InWidth) + StartOffset; |
| 197 | + P4 = RotatePointAroundPivot(P4, StartPoint, RotationAngle); |
| 198 | + |
| 199 | + // p1 to p4 to p2 |
| 200 | + NormalNext = FVector::CrossProduct(P1 - P2, P4 - P2).GetSafeNormal(); |
| 201 | + AverageNormalRight = ((NormalCurrent + NormalNext) / 2).GetSafeNormal(); |
| 202 | + |
| 203 | + const float PreviousAngle = static_cast<float>(QuadIndex - 1) * AngleBetweenQuads; |
| 204 | + FVector PMinus1 = FVector(FMath::Cos(PreviousAngle) * InWidth, FMath::Sin(PreviousAngle) * InWidth, 0.f) + StartOffset; |
| 205 | + PMinus1 = RotatePointAroundPivot(PMinus1, StartPoint, RotationAngle); |
| 206 | + |
| 207 | + // p0 to p3 to pMinus1 |
| 208 | + NormalPrevious = FVector::CrossProduct(P0 - PMinus1, P3 - PMinus1).GetSafeNormal(); |
| 209 | + AverageNormalLeft = ((NormalCurrent + NormalPrevious) / 2).GetSafeNormal(); |
| 210 | + } |
| 211 | + |
| 212 | + // Tangents (perpendicular to the surface) |
| 213 | + const FVector Tangent = (P0 - P1).GetSafeNormal(); |
| 214 | + |
| 215 | + // UVs |
| 216 | + const FVector2D UV0 = FVector2D(1.0f - (UMapPerQuad * QuadIndex), 1.0f); |
| 217 | + const FVector2D UV1 = FVector2D(1.0f - (UMapPerQuad * (QuadIndex + 1)), 1.0f); |
| 218 | + const FVector2D UV2 = FVector2D(1.0f - (UMapPerQuad * (QuadIndex + 1)), 0.0f); |
| 219 | + const FVector2D UV3 = FVector2D(1.0f - (UMapPerQuad * QuadIndex), 0.0f); |
| 220 | + |
| 221 | + const int32 V0 = Builder.AddVertex(static_cast<FVector3f>(P0)) |
| 222 | + .SetNormalAndTangent(static_cast<FVector3f>(bInSmoothNormals ? AverageNormalLeft : NormalCurrent), static_cast<FVector3f>(Tangent)) |
| 223 | + .SetTexCoord(static_cast<FVector2f>(UV0)); |
| 224 | + const int32 V1 = Builder.AddVertex(static_cast<FVector3f>(P1)) |
| 225 | + .SetNormalAndTangent(static_cast<FVector3f>(bInSmoothNormals ? AverageNormalRight : NormalCurrent), static_cast<FVector3f>(Tangent)) |
| 226 | + .SetTexCoord(static_cast<FVector2f>(UV1)); |
| 227 | + const int32 V2 = Builder.AddVertex(static_cast<FVector3f>(P2)) |
| 228 | + .SetNormalAndTangent(static_cast<FVector3f>(bInSmoothNormals ? AverageNormalRight : NormalCurrent), static_cast<FVector3f>(Tangent)) |
| 229 | + .SetTexCoord(static_cast<FVector2f>(UV2)); |
| 230 | + const int32 V3 = Builder.AddVertex(static_cast<FVector3f>(P3)) |
| 231 | + .SetNormalAndTangent(static_cast<FVector3f>(bInSmoothNormals ? AverageNormalLeft : NormalCurrent), static_cast<FVector3f>(Tangent)) |
| 232 | + .SetTexCoord(static_cast<FVector2f>(UV3)); |
| 233 | + |
| 234 | + // Add our 2 triangles, placing the vertices in counter clockwise order |
| 235 | + Builder.AddTriangle(V3, V2, V0, 0); |
| 236 | + Builder.AddTriangle(V2, V1, V0, 0); |
| 237 | + } |
| 238 | +} |
0 commit comments