Rails integration for TimescaleDB's pgai PostgreSQL extension.
pgai_rails provides Rails-native integration with TimescaleDB's pgai extension, making AI-powered vectorization and semantic search simple and intuitive in Rails applications.
Transform complex pgai SQL operations into familiar Rails patterns:
# Instead of complex SQL vectorizer setup
class Post < ApplicationRecord
include PgaiRails::Vectorizable
vectorize :content, provider: :ollama, model: 'nomic-embed-text'
end
# Simple semantic search
Post.semantic_search("machine learning")
pgai_rails supports all major embedding providers that pgai supports:
- Ollama - Local and hosted Ollama models
- OpenAI - text-embedding-3-small, text-embedding-ada-002, etc.
- Voyage AI - voyage-2, voyage-code-2, etc.
- Cohere - embed-english-v3.0, etc.
- Mistral - mistral-embed, etc.
- Azure OpenAI - Azure-hosted OpenAI models
- Hugging Face - Any embedding model from HF
- AWS Bedrock - Amazon Titan and other Bedrock models
- Google Vertex AI - textembedding-gecko, etc.
# Create vectorizer for different providers
class CreatePostVectorizer < ActiveRecord::Migration[7.1]
def up
# Ollama (default)
create_vectorizer 'posts' do
loading_column 'content'
embedding :ollama, model: 'nomic-embed-text', dimensions: 768
chunking :character, size: 512, overlap: 50
end
# OpenAI
create_vectorizer 'articles', name: 'articles_openai' do
loading_column 'body'
embedding :openai, model: 'text-embedding-3-small', dimensions: 1536
chunking :recursive, size: 1000, overlap: 100
end
# Cohere via LiteLLM
create_vectorizer 'documents', name: 'docs_cohere' do
loading_column 'text'
embedding :cohere,
model: 'embed-english-v3.0',
dimensions: 1024,
api_key_name: 'COHERE_API_KEY'
end
end
def down
drop_vectorizer 'posts_vectorizer'
drop_vectorizer 'articles_openai'
drop_vectorizer 'docs_cohere'
end
end
Add to your Gemfile:
gem 'pgai_rails'
- Ruby >= 3.2.0
- Rails >= 7.1 (ActiveRecord, ActiveSupport, Railties)
- PostgreSQL with pgai extension installed
- TimescaleDB (optional but recommended)
# config/initializers/pgai_rails.rb
PgaiRails.configure do |config|
config.default_provider = :ollama
config.ollama_base_url = 'http://localhost:11434'
config.default_model = 'nomic-embed-text'
config.default_dimensions = 768
config.fallback_on_error = true
# Configure provider-specific settings
config.configure_provider :openai, api_key: ENV['OPENAI_API_KEY']
config.configure_provider :cohere, api_key: ENV['COHERE_API_KEY']
end
# Ollama with custom parameters
embedding :ollama,
model: 'nomic-embed-text',
dimensions: 768,
base_url: 'http://custom-ollama:11434',
model_parameters: 'temperature:0.1',
keep_alive: '5m'
# OpenAI with automatic dimensions
embedding :openai, model: 'text-embedding-3-small' # dimensions auto-detected
# Cohere with search optimization
embedding :cohere,
model: 'embed-english-v3.0',
dimensions: 1024,
input_type: 'search_document',
api_key_name: 'COHERE_API_KEY'
# Azure OpenAI
embedding :azure_openai,
model: 'text-embedding-ada-002',
api_key_name: 'AZURE_OPENAI_KEY'
# Hugging Face model
embedding :huggingface,
model: 'microsoft/codebert-base',
dimensions: 768
# AWS Bedrock
embedding :aws_bedrock,
model: 'amazon.titan-embed-text-v1',
dimensions: 1536
pgai_rails provides convenient Rake tasks for Rails applications:
rails pgai_rails:init
Creates config/initializers/pgai_rails.rb
with comprehensive configuration options for all supported providers.
rails pgai_rails:status
Displays:
- pgai and pgvector extension availability
- Current configuration settings
- Active vectorizers in your database
rails pgai_rails:providers
Shows all supported embedding providers with usage examples.
rails pgai_rails:reset_cache
Clears cached extension detection results.
This gem is under active development. Phase 1 (Foundation) and Phase 2 (Migration Helpers) are complete with comprehensive provider support and Rails integration.
After checking out the repo, run bin/setup
to install dependencies. Then, run rake test
to run the tests. You can also run bin/console
for an interactive prompt that will allow you to experiment.
To install this gem onto your local machine, run bundle exec rake install
. To release a new version, update the version number in version.rb
, and then run bundle exec rake release
, which will create a git tag for the version, push git commits and the created tag, and push the .gem
file to rubygems.org.
Bug reports and pull requests are welcome on GitHub at https://github.com/[USERNAME]/pgai_rails. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the code of conduct.
The gem is available as open source under the terms of the MIT License.
Everyone interacting in the PgaiRails project's codebases, issue trackers, chat rooms and mailing lists is expected to follow the code of conduct.