Skip to content

[OpenVINO Backend] support ops.slice_update #21362

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
78 changes: 76 additions & 2 deletions keras/src/backend/openvino/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -657,9 +657,83 @@ def slice(inputs, start_indices, shape):


def slice_update(inputs, start_indices, updates):
raise NotImplementedError(
"`slice_update` is not supported with openvino backend"
inputs = get_ov_output(inputs)
if isinstance(start_indices, (list, np.ndarray)):
start_indices = tuple(start_indices)
assert isinstance(start_indices, tuple), (
"`slice_update` is not supported by openvino backend"
" for `start_indices` of type {}".format(type(start_indices))
)
processed_start_indices = []
for idx in start_indices:
val = get_ov_output(idx)
val_type = val.get_element_type()
if not val_type.is_integral():
raise ValueError(
"`slice` is not supported by OpenVINO backend "
"for `start_indices` or `shape` with non-integer types"
)
if val_type != Type.i32:
val = ov_opset.convert(val, Type.i32).output(0)
if len(val.get_partial_shape()) == 0:
val = ov_opset.unsqueeze(
val, ov_opset.constant(0, Type.i32)
).output(0)
processed_start_indices.append(val)
start_indices_tensor = ov_opset.concat(processed_start_indices, axis=0)

rank = len(updates.shape)
ranges = []
for dim in updates.shape:
r = ov_opset.range(
ov_opset.constant(0, Type.i32),
ov_opset.constant(dim, Type.i32),
ov_opset.constant(1, Type.i32),
output_type=Type.i32,
)
ranges.append(r)

broadcasted_ranges = []
for i, r in enumerate(ranges):
shape = [1] * rank
shape[i] = updates.shape[i]
r_reshaped = ov_opset.reshape(
r, ov_opset.constant(shape, Type.i32), special_zero=False
).output(0)
target_shape = ov_opset.constant(list(updates.shape), Type.i32)
r_broadcasted = ov_opset.broadcast(r_reshaped, target_shape).output(0)
broadcasted_ranges.append(r_broadcasted)

indices_stack = ov_opset.concat(broadcasted_ranges, axis=0).output(0)

num_updates = 1
for dim in updates.shape:
num_updates *= dim
new_shape = ov_opset.constant([rank, num_updates], Type.i32)
indices_reshaped = ov_opset.reshape(
indices_stack, new_shape, special_zero=False
).output(0)
absolute_indices = ov_opset.transpose(
indices_reshaped, ov_opset.constant([1, 0], Type.i32)
).output(0)

start_indices_expanded = ov_opset.broadcast(
start_indices_tensor, ov_opset.constant([num_updates, rank], Type.i32)
).output(0)
absolute_indices = ov_opset.add(
absolute_indices, start_indices_expanded
).output(0)

updates_tensor = get_ov_output(updates)
updates_flat = ov_opset.reshape(
updates_tensor,
ov_opset.constant([num_updates], Type.i32),
special_zero=False,
).output(0)
updated = ov_opset.scatter_nd_update(
inputs, absolute_indices, updates_flat
).output(0)
return OpenVINOKerasTensor(updated)


def while_loop(
Expand Down