RAG-Stocks is an advanced stock research and recommendation platform that leverages cutting-edge AI technologies to provide intelligent insights into financial markets. By combining Retrieval-Augmented Generation (RAG), real-time trading data, and natural language processing, this application offers comprehensive stock analysis and personalized investment recommendations.
- AI-Powered Stock Analysis
- Real-time Market Data
- Natural Language Query Interface
- Intelligent Stock Recommendations
- Portfolio Tracking
- Frontend: Next.js (React)
- Backend: Python
- AI Technologies:
- LangChain
- Weaviate Vector Database
- Trading API: Alpaca
- Database: Neon PostgreSQL
- Python 3.9+
- Node.js 18+
- Docker (optional)
git clone https://github.com/laukikk/RAG-Stocks.git
cd RAG-Stocks
cd backend
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
cd ../frontend
npm install
- Copy
.env.example
to.env
- Fill in required API keys:
- Alpaca Trading
- Neon Database
- OpenAI
- Weaviate
- GitHub Token: optional (I'm using GitHub Models)
# Start Backend
cd backend
python src/main.py
# Start Frontend (in another terminal)
cd frontend
npm run dev
docker-compose up --build
# Run Backend Tests
cd backend
python -m pytest tests/
# Run Frontend Tests
cd frontend
npm test