@@ -44,7 +44,7 @@ def unitary (R : Type*) [Monoid R] [StarMul R] : Submonoid R where
4444
4545variable {R : Type *}
4646
47- namespace unitary
47+ namespace Unitary
4848
4949section Monoid
5050
@@ -127,7 +127,7 @@ theorem toUnits_injective : Function.Injective (toUnits : unitary R → Rˣ) :=
127127
128128theorem _root_.IsUnit.mem_unitary_iff_star_mul_self {u : R} (hu : IsUnit u) :
129129 u ∈ unitary R ↔ star u * u = 1 := by
130- rw [unitary. mem_iff, and_iff_left_of_imp fun h_mul => ?_]
130+ rw [mem_iff, and_iff_left_of_imp fun h_mul => ?_]
131131 lift u to Rˣ using hu
132132 exact left_inv_eq_right_inv h_mul u.mul_inv ▸ u.mul_inv
133133
@@ -142,13 +142,13 @@ alias ⟨_, _root_.IsUnit.mem_unitary_of_mul_star_self⟩ := IsUnit.mem_unitary_
142142for all `x` and `y` in `R`. -/
143143protected theorem mul_left_inj {x y : R} (U : unitary R) :
144144 x * U = y * U ↔ x = y :=
145- unitary. val_toUnits_apply U ▸ Units.mul_left_inj _
145+ val_toUnits_apply U ▸ Units.mul_left_inj _
146146
147147/-- For unitary `U` in a star-monoid `R`, `U * x = U * y` if and only if `x = y`
148148for all `x` and `y` in `R`. -/
149149protected theorem mul_right_inj {x y : R} (U : unitary R) :
150150 U * x = U * y ↔ x = y :=
151- unitary. val_toUnits_apply U ▸ Units.mul_right_inj _
151+ val_toUnits_apply U ▸ Units.mul_right_inj _
152152
153153lemma mul_inv_mem_iff {G : Type *} [Group G] [StarMul G] (a b : G) :
154154 a * b⁻¹ ∈ unitary G ↔ star a * a = star b * b := by
@@ -161,7 +161,7 @@ lemma inv_mul_mem_iff {G : Type*} [Group G] [StarMul G] (a b : G) :
161161
162162theorem _root_.Units.unitary_eq : unitary Rˣ = (unitary R).comap (Units.coeHom R) := by
163163 ext
164- simp [unitary. mem_iff, Units.ext_iff]
164+ simp [mem_iff, Units.ext_iff]
165165
166166/-- In a star monoid, the product `a * b⁻¹` of units is unitary if `star a * a = star b * b`. -/
167167protected lemma _root_.Units.mul_inv_mem_unitary (a b : Rˣ) :
@@ -185,14 +185,14 @@ lemma _root_.isStarNormal_of_mem_unitary {u : R} (hu : u ∈ unitary R) : IsStar
185185
186186end Monoid
187187
188- end unitary
188+ end Unitary
189189
190190section Group
191191
192192variable {G : Type *} [Group G] [StarMul G]
193193
194- theorem unitary .inv_mem {g : G} (hg : g ∈ unitary G) : g⁻¹ ∈ unitary G := by
195- simp_rw [unitary. mem_iff, star_inv, ← mul_inv_rev, inv_eq_one] at *
194+ theorem Unitary .inv_mem {g : G} (hg : g ∈ unitary G) : g⁻¹ ∈ unitary G := by
195+ simp_rw [mem_iff, star_inv, ← mul_inv_rev, inv_eq_one] at *
196196 exact hg.symm
197197
198198variable (G) in
@@ -203,7 +203,7 @@ This situation naturally arises when considering the unitary elements as a
203203subgroup of the group of units of a star monoid. -/
204204def unitarySubgroup : Subgroup G where
205205 toSubmonoid := unitary G
206- inv_mem' := unitary .inv_mem
206+ inv_mem' := Unitary .inv_mem
207207
208208@[simp]
209209theorem unitarySubgroup_toSubmonoid : (unitarySubgroup G).toSubmonoid = unitary G := rfl
@@ -212,12 +212,12 @@ theorem unitarySubgroup_toSubmonoid : (unitarySubgroup G).toSubmonoid = unitary
212212theorem mem_unitarySubgroup_iff {g : G} : g ∈ unitarySubgroup G ↔ g ∈ unitary G :=
213213 Iff.rfl
214214
215- nonrec theorem unitary .inv_mem_iff {g : G} : g⁻¹ ∈ unitary G ↔ g ∈ unitary G :=
215+ nonrec theorem Unitary .inv_mem_iff {g : G} : g⁻¹ ∈ unitary G ↔ g ∈ unitary G :=
216216 inv_mem_iff (H := unitarySubgroup G)
217217
218218end Group
219219
220- namespace unitary
220+ namespace Unitary
221221
222222section SMul
223223
@@ -276,7 +276,7 @@ variable {R S T : Type*} [Monoid R] [StarMul R] [Monoid S] [StarMul S] [Monoid T
276276
277277lemma map_mem {F : Type *} [FunLike F R S] [StarHomClass F R S] [MonoidHomClass F R S]
278278 (f : F) {r : R} (hr : r ∈ unitary R) : f r ∈ unitary S := by
279- rw [unitary. mem_iff] at hr
279+ rw [mem_iff] at hr
280280 simpa [map_star, map_mul] using And.intro congr(f $(hr.1 )) congr(f $(hr.2 ))
281281
282282/-- The star monoid homomorphism between unitary subgroups induced by a star monoid homomorphism of
@@ -404,25 +404,78 @@ universe u
404404
405405variable {R A : Type *} [CommSemiring R] [Ring A] [Algebra R A] [StarMul A]
406406
407- /-- Unitary conjugation preserves the spectrum, star on left . -/
407+ /-- Unitary conjugation preserves the spectrum, star on right . -/
408408@[simp]
409- lemma spectrum.unitary_conjugate {a : A} {u : unitary A} :
410- spectrum R (u * a * (star u : A)) = spectrum R a :=
411- spectrum.units_conjugate (u := unitary. toUnits u )
409+ lemma spectrum_star_right_conjugate {a : A} {U : unitary A} :
410+ spectrum R (U * a * (star U : A)) = spectrum R a :=
411+ spectrum.units_conjugate (u := toUnits U )
412412
413- /-- Unitary conjugation preserves the spectrum, star on right . -/
413+ /-- Unitary conjugation preserves the spectrum, star on left . -/
414414@[simp]
415- lemma spectrum.unitary_conjugate' {a : A} {u : unitary A} :
416- spectrum R ((star u : A) * a * u ) = spectrum R a := by
417- simpa using spectrum.unitary_conjugate (u := star u )
415+ lemma spectrum_star_left_conjugate {a : A} {U : unitary A} :
416+ spectrum R ((star U : A) * a * U ) = spectrum R a := by
417+ simpa using spectrum_star_right_conjugate (U := star U )
418418
419419end UnitaryConjugate
420420
421- end unitary
421+ end Unitary
422422
423423theorem IsStarProjection.two_mul_sub_one_mem_unitary {R : Type *} [Ring R] [StarRing R] {p : R}
424424 (hp : IsStarProjection p) : 2 * p - 1 ∈ unitary R := by
425- simp only [two_mul, unitary .mem_iff, star_sub, star_add,
425+ simp only [two_mul, Unitary .mem_iff, star_sub, star_add,
426426 hp.isSelfAdjoint.star_eq, star_one, mul_sub, mul_add,
427427 sub_mul, add_mul, hp.isIdempotentElem.eq, one_mul, add_sub_cancel_right,
428428 mul_one, sub_sub_cancel, and_self]
429+
430+ namespace unitary
431+
432+ /-! ### Deprecated results -/
433+
434+ @[deprecated (since := "2025-10-29")] alias mem_iff := Unitary.mem_iff
435+ @[deprecated (since := "2025-10-29")] alias star_mul_self_of_mem := Unitary.star_mul_self_of_mem
436+ @[deprecated (since := "2025-10-29")] alias mul_star_self_of_mem := Unitary.mul_star_self_of_mem
437+ @[deprecated (since := "2025-10-29")] alias star_mem := Unitary.star_mem
438+ @[deprecated (since := "2025-10-29")] alias star_mem_iff := Unitary.star_mem_iff
439+ @[deprecated (since := "2025-10-29")] alias coe_star := Unitary.coe_star
440+ @[deprecated (since := "2025-10-29")] alias coe_star_mul_self := Unitary.coe_star_mul_self
441+ @[deprecated (since := "2025-10-29")] alias coe_mul_star_self := Unitary.coe_mul_star_self
442+ @[deprecated (since := "2025-10-29")] alias star_mul_self := Unitary.star_mul_self
443+ @[deprecated (since := "2025-10-29")] alias mul_star_self := Unitary.mul_star_self
444+ @[deprecated (since := "2025-10-29")] alias star_eq_inv := Unitary.star_eq_inv
445+ @[deprecated (since := "2025-10-29")] alias star_eq_inv' := Unitary.star_eq_inv'
446+ @[deprecated (since := "2025-10-29")] alias toUnits := Unitary.toUnits
447+ @[deprecated (since := "2025-10-29")] alias val_toUnits_apply := Unitary.val_toUnits_apply
448+ @[deprecated (since := "2025-10-29")] alias toUnits_injective := Unitary.toUnits_injective
449+ @[deprecated (since := "2025-10-29")] alias mul_left_inj := Unitary.mul_left_inj
450+ @[deprecated (since := "2025-10-29")] alias mul_right_inj := Unitary.mul_right_inj
451+ @[deprecated (since := "2025-10-29")] alias mul_inv_mem_iff := Unitary.mul_inv_mem_iff
452+ @[deprecated (since := "2025-10-29")] alias inv_mul_mem_iff := Unitary.inv_mul_mem_iff
453+ @[deprecated (since := "2025-10-29")] alias inv_mem := Unitary.inv_mem
454+ @[deprecated (since := "2025-10-29")] alias smul_mem_of_mem := Unitary.smul_mem_of_mem
455+ @[deprecated (since := "2025-10-29")] alias smul_mem := Unitary.smul_mem
456+ @[deprecated (since := "2025-10-29")] alias coe_smul := Unitary.coe_smul
457+ @[deprecated (since := "2025-10-29")] alias map_mem := Unitary.map_mem
458+ @[deprecated (since := "2025-10-29")] alias map := Unitary.map
459+ @[deprecated (since := "2025-10-29")] alias coe_map := Unitary.coe_map
460+ @[deprecated (since := "2025-10-29")] alias coe_map_star := Unitary.coe_map_star
461+ @[deprecated (since := "2025-10-29")] alias map_id := Unitary.map_id
462+ @[deprecated (since := "2025-10-29")] alias map_comp := Unitary.map_comp
463+ @[deprecated (since := "2025-10-29")] alias map_injective := Unitary.map_injective
464+ @[deprecated (since := "2025-10-29")] alias toUnits_comp_map := Unitary.toUnits_comp_map
465+ @[deprecated (since := "2025-10-29")] alias mapEquiv := Unitary.mapEquiv
466+ @[deprecated (since := "2025-10-29")] alias mapEquiv_refl := Unitary.mapEquiv_refl
467+ @[deprecated (since := "2025-10-29")] alias mapEquiv_symm := Unitary.mapEquiv_symm
468+ @[deprecated (since := "2025-10-29")] alias mapEquiv_trans := Unitary.mapEquiv_trans
469+ @[deprecated (since := "2025-10-29")] alias toMonoidHom_mapEquiv := Unitary.toMonoidHom_mapEquiv
470+ @[deprecated (since := "2025-10-29")] alias mem_iff_star_mul_self := Unitary.mem_iff_star_mul_self
471+ @[deprecated (since := "2025-10-29")] alias mem_iff_self_mul_star := Unitary.mem_iff_self_mul_star
472+ @[deprecated (since := "2025-10-29")] alias coe_inv := Unitary.coe_inv
473+ @[deprecated (since := "2025-10-29")] alias coe_div := Unitary.coe_div
474+ @[deprecated (since := "2025-10-29")] alias coe_zpow := Unitary.coe_zpow
475+ @[deprecated (since := "2025-10-29")] alias coe_neg := Unitary.coe_neg
476+ @[deprecated (since := "2025-10-20")] alias spectrum.unitary_conjugate :=
477+ Unitary.spectrum_star_right_conjugate
478+ @[deprecated (since := "2025-10-20")] alias spectrum.unitary_conjugate' :=
479+ Unitary.spectrum_star_left_conjugate
480+
481+ end unitary
0 commit comments