Skip to content
Closed
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 13 additions & 7 deletions Mathlib/Analysis/InnerProductSpace/MulOpposite.lean
Original file line number Diff line number Diff line change
Expand Up @@ -26,31 +26,37 @@ instance [Inner 𝕜 H] : Inner 𝕜 Hᵐᵒᵖ where inner x y := inner 𝕜 x.

@[simp] theorem inner_op [Inner 𝕜 H] (x y : H) : inner 𝕜 (op x) (op y) = inner 𝕜 x y := rfl

variable [RCLike 𝕜] [NormedAddCommGroup H] [InnerProductSpace 𝕜 H]
variable [RCLike 𝕜] [SeminormedAddCommGroup H] [InnerProductSpace 𝕜 H]

instance : InnerProductSpace 𝕜 Hᵐᵒᵖ where
norm_sq_eq_re_inner x := (inner_self_eq_norm_sq x.unop).symm
conj_inner_symm x y := InnerProductSpace.conj_inner_symm x.unop y.unop
add_left x y z := InnerProductSpace.add_left x.unop y.unop z.unop
smul_left x y r := InnerProductSpace.smul_left x.unop y.unop r

section orthonormal

theorem _root_.Module.Basis.mulOpposite_is_orthonormal_iff {ι : Type*} (b : Module.Basis ι 𝕜 H) :
Orthonormal 𝕜 b.mulOpposite ↔ Orthonormal 𝕜 b := Iff.rfl

variable {ι H : Type*} [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] [Fintype ι]

/-- The multiplicative opposite of an orthonormal basis `b`, i.e., `b i ↦ op (b i)`. -/
noncomputable def _root_.OrthonormalBasis.mulOpposite {ι : Type*}
[Fintype ι] (b : OrthonormalBasis ι 𝕜 H) :
noncomputable def _root_.OrthonormalBasis.mulOpposite (b : OrthonormalBasis ι 𝕜 H) :
OrthonormalBasis ι 𝕜 Hᵐᵒᵖ := b.toBasis.mulOpposite.toOrthonormalBasis b.orthonormal

@[simp] lemma _root_.OrthonormalBasis.toBasis_mulOpposite (b : OrthonormalBasis ι 𝕜 H) :
b.mulOpposite.toBasis = b.toBasis.mulOpposite := rfl

end orthonormal

theorem isometry_opLinearEquiv {R M : Type*} [Semiring R] [SeminormedAddCommGroup M] [Module R M] :
Isometry (opLinearEquiv R (M:=M)) := fun _ _ => rfl
Isometry (opLinearEquiv R (M := M)) := fun _ _ => rfl

variable (𝕜 H) in
/-- The linear isometry equivalence version of the function `op`. -/
@[simps!]
def opLinearIsometryEquiv : H ≃ₗᵢ[𝕜] Hᵐᵒᵖ where
toLinearEquiv := opLinearEquiv 𝕜
norm_map' _ := rfl
def opLinearIsometryEquiv : H ≃ₗᵢ[𝕜] Hᵐᵒᵖ := (opLinearEquiv 𝕜).isometryOfInner inner_op

@[simp]
theorem toLinearEquiv_opLinearIsometryEquiv :
Expand Down
Loading