Skip to content
Closed
Changes from 9 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 26 additions & 12 deletions Mathlib/Analysis/InnerProductSpace/MulOpposite.lean
Original file line number Diff line number Diff line change
Expand Up @@ -13,9 +13,8 @@ This file defines the inner product space structure on `Hᵐᵒᵖ` where we def
the inner product naturally. We also define `OrthonormalBasis.mulOpposite`.
-/

variable {𝕜 H : Type*}

namespace MulOpposite
variable {𝕜 H : Type*}

open MulOpposite

Expand All @@ -26,38 +25,53 @@ instance [Inner 𝕜 H] : Inner 𝕜 Hᵐᵒᵖ where inner x y := inner 𝕜 x.

@[simp] theorem inner_op [Inner 𝕜 H] (x y : H) : inner 𝕜 (op x) (op y) = inner 𝕜 x y := rfl

variable [RCLike 𝕜] [NormedAddCommGroup H] [InnerProductSpace 𝕜 H]
section InnerProductSpace
variable [RCLike 𝕜] [SeminormedAddCommGroup H] [InnerProductSpace 𝕜 H]

instance : InnerProductSpace 𝕜 Hᵐᵒᵖ where
norm_sq_eq_re_inner x := (inner_self_eq_norm_sq x.unop).symm
conj_inner_symm x y := InnerProductSpace.conj_inner_symm x.unop y.unop
add_left x y z := InnerProductSpace.add_left x.unop y.unop z.unop
smul_left x y r := InnerProductSpace.smul_left x.unop y.unop r

section orthonormal

theorem _root_.Module.Basis.mulOpposite_is_orthonormal_iff {ι : Type*} (b : Module.Basis ι 𝕜 H) :
Orthonormal 𝕜 b.mulOpposite ↔ Orthonormal 𝕜 b := Iff.rfl

variable {ι H : Type*} [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] [Fintype ι]

/-- The multiplicative opposite of an orthonormal basis `b`, i.e., `b i ↦ op (b i)`. -/
noncomputable def _root_.OrthonormalBasis.mulOpposite {ι : Type*}
[Fintype ι] (b : OrthonormalBasis ι 𝕜 H) :
noncomputable def _root_.OrthonormalBasis.mulOpposite (b : OrthonormalBasis ι 𝕜 H) :
OrthonormalBasis ι 𝕜 Hᵐᵒᵖ := b.toBasis.mulOpposite.toOrthonormalBasis b.orthonormal

theorem isometry_opLinearEquiv {R M : Type*} [Semiring R] [SeminormedAddCommGroup M] [Module R M] :
Isometry (opLinearEquiv R (M:=M)) := fun _ _ => rfl
@[simp] lemma _root_.OrthonormalBasis.toBasis_mulOpposite (b : OrthonormalBasis ι 𝕜 H) :
b.mulOpposite.toBasis = b.toBasis.mulOpposite := rfl

variable (𝕜 H) in
end orthonormal

end InnerProductSpace

section opIsometry
variable {R H : Type*} [Semiring R] [SeminormedAddCommGroup H] [Module R H]

theorem isometry_opLinearEquiv : Isometry (opLinearEquiv R (M := H)) := fun _ _ => rfl

variable (R H) in
/-- The linear isometry equivalence version of the function `op`. -/
@[simps!]
def opLinearIsometryEquiv : H ≃ₗᵢ[𝕜] Hᵐᵒᵖ where
toLinearEquiv := opLinearEquiv 𝕜
def opLinearIsometryEquiv : H ≃ₗᵢ[R] Hᵐᵒᵖ where
toLinearEquiv := opLinearEquiv R
norm_map' _ := rfl

@[simp]
theorem toLinearEquiv_opLinearIsometryEquiv :
(opLinearIsometryEquiv 𝕜 H).toLinearEquiv = opLinearEquiv 𝕜 := rfl
(opLinearIsometryEquiv R H).toLinearEquiv = opLinearEquiv R := rfl

@[simp]
theorem toContinuousLinearEquiv_opLinearIsometryEquiv :
(opLinearIsometryEquiv 𝕜 H).toContinuousLinearEquiv = opContinuousLinearEquiv 𝕜 := rfl
(opLinearIsometryEquiv R H).toContinuousLinearEquiv = opContinuousLinearEquiv R := rfl

end opIsometry

end MulOpposite