Skip to content

liu-jc/PyTorch_NGCF

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyTorch Implementation for Neural Graph Collaborative Filtering

This is a PyTorch Implemenation for this paper:

Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua (2019). Neural Graph Collaborative Filtering. SIGIR 2019

Original TensorFlow Implementation can be found here

Environment Requirement

You may simply run pip install -r requirements.txt

In this implementation, we use Python 3.7.5 with CUDA 10.1. The required packages are as follows:

  • pytorch==1.3.1
  • numpy==1.16.4
  • scipy==1.4.1
  • scikit-learn==0.22

Run the Code

NGCF

  • Gowalla:
python main.py --dataset gowalla --alg_type ngcf --regs [1e-5] --embed_size 64 --layer_size [64,64,64] --lr 0.0001 --save_flag 1 --pretrain 0 --batch_size 4096 --epoch 500 --verbose 1 --mess_dropout [0.1,0.1,0.1] 
  • Amazon-book:
python main.py --dataset amazon-book --alg_type ngcf --regs [1e-5] --embed_size 64 --layer_size [64,64,64] --lr 0.0005 --save_flag 1 --pretrain 0 --batch_size 4096 --epoch 500 --verbose 1 --mess_dropout [0.1,0.1,0.1]

MF

  • Gowalla:
python main.py --dataset gowalla --alg_type mf --regs [1e-5] --embed_size 64  --lr 0.0001 --save_flag 1 --pretrain 0 --batch_size 4096 --epoch 500 --verbose 1 
  • Amazon-book:
python main.py --dataset amazon-book --alg_type mf --regs [1e-5] --embed_size 64  --lr 0.0005 --save_flag 1 --pretrain 0 --batch_size 4096 --epoch 500 --verbose 1 --mess_dropout [0.1,0.1,0.1]

Dataset

Datasets and Data files are the same as thoese in the original repository.

About

PyTorch Implemenation for Neural Graph Collaborative Filtering

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages