|
| 1 | +//===----------------------------------------------------------------------===// |
| 2 | +// |
| 3 | +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | +// See https://llvm.org/LICENSE.txt for license information. |
| 5 | +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | +// Also available under a BSD-style license. See LICENSE. |
| 7 | +// |
| 8 | +//===----------------------------------------------------------------------===// |
| 9 | + |
| 10 | +#include "mlir/IR/BuiltinAttributes.h" |
| 11 | +#include "torch-mlir/Conversion/TorchToStablehlo/TorchToStablehlo.h" |
| 12 | + |
| 13 | +#include "../PassDetail.h" |
| 14 | +#include "PopulatePatterns.h" |
| 15 | +#include "Utils.h" |
| 16 | + |
| 17 | +#include "mlir/Dialect/Arith/IR/Arith.h" |
| 18 | +#include "mlir/Dialect/Quant/IR/QuantTypes.h" |
| 19 | +#include "mlir/Dialect/Shape/IR/Shape.h" |
| 20 | +#include "mlir/Dialect/Tensor/IR/Tensor.h" |
| 21 | +#include "stablehlo/dialect/ChloOps.h" |
| 22 | +#include "stablehlo/dialect/StablehloOps.h" |
| 23 | +#include "torch-mlir/Conversion/TorchToStablehlo/StablehloLegalizeUtils.h" |
| 24 | +#include "torch-mlir/Conversion/Utils/Utils.h" |
| 25 | +#include "torch-mlir/Dialect/Torch/IR/TorchOps.h" |
| 26 | +#include "torch-mlir/Dialect/Torch/IR/TorchTypes.h" |
| 27 | +#include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h" |
| 28 | +#include "torch-mlir/Dialect/Torch/Utils/Utils.h" |
| 29 | +#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h" |
| 30 | +#include "llvm/ADT/APFloat.h" |
| 31 | +#include "llvm/ADT/APInt.h" |
| 32 | +#include "llvm/ADT/ArrayRef.h" |
| 33 | +#include "llvm/ADT/SmallVector.h" |
| 34 | +#include <cmath> |
| 35 | +#include <cstdint> |
| 36 | +#include <numeric> |
| 37 | +#include <type_traits> |
| 38 | + |
| 39 | +using namespace mlir; |
| 40 | +using namespace mlir::torch; |
| 41 | +using namespace mlir::torch::Torch; |
| 42 | +using namespace mlir::torch::torch_to_stablehlo; |
| 43 | + |
| 44 | +// AtenQuantizePerTensorOp |
| 45 | +// torch-mlir uses AtenQuantizePerTensorOp and AtenIntReprOp for per tensor |
| 46 | +// quantization. These two ops are processed and converted together to |
| 47 | +// stablehlo.uniform_quantize op. |
| 48 | +namespace { |
| 49 | +class ConvertAtenQuantizePerTensorOp |
| 50 | + : public OpConversionPattern<AtenQuantizePerTensorOp> { |
| 51 | +public: |
| 52 | + using OpConversionPattern::OpConversionPattern; |
| 53 | + |
| 54 | + LogicalResult |
| 55 | + matchAndRewrite(AtenQuantizePerTensorOp op, OpAdaptor adaptor, |
| 56 | + ConversionPatternRewriter &rewriter) const override { |
| 57 | + auto *zeroPoint = op.getZeroPoint().getDefiningOp(); |
| 58 | + if (!zeroPoint || !isa<ConstantIntOp>(zeroPoint)) { |
| 59 | + return failure(); |
| 60 | + } |
| 61 | + auto zeroPointConstantOp = mlir::cast<ConstantIntOp>(zeroPoint); |
| 62 | + auto zeroPointValue = zeroPointConstantOp.getValueAttr().getInt(); |
| 63 | + |
| 64 | + auto scale = op.getScale().getDefiningOp(); |
| 65 | + if (!scale || !isa<ConstantFloatOp>(scale)) { |
| 66 | + return failure(); |
| 67 | + } |
| 68 | + |
| 69 | + auto scaleConstantOp = mlir::cast<ConstantFloatOp>(scale); |
| 70 | + auto scaleValue = |
| 71 | + scaleConstantOp.getValueAttr().getValue().convertToDouble(); |
| 72 | + |
| 73 | + auto users = op.getResult().getUsers(); |
| 74 | + auto opUser = *op.getResult().user_begin(); |
| 75 | + if (!(std::distance(users.begin(), users.end()) == 1) || |
| 76 | + !isa<AtenIntReprOp>(opUser)) { |
| 77 | + return failure(); |
| 78 | + } |
| 79 | + |
| 80 | + auto inputElemType = |
| 81 | + mlir::cast<RankedTensorType>( |
| 82 | + getTypeConverter()->convertType(op.getOperands().front().getType())) |
| 83 | + .getElementType(); |
| 84 | + |
| 85 | + mlir::Type dtype = |
| 86 | + cast<ValueTensorType>(op->getResult(0).getType()).getDtype(); |
| 87 | + int32_t bitWidth = 0; |
| 88 | + int32_t flags = quant::QuantizationFlags::FlagValue::Signed; |
| 89 | + if (isa<QUInt8Type>(dtype)) { |
| 90 | + bitWidth = 8; |
| 91 | + flags = 0; |
| 92 | + } else if (isa<QInt8Type>(dtype)) { |
| 93 | + bitWidth = 8; |
| 94 | + } else if (isa<QInt16Type>(dtype)) { |
| 95 | + bitWidth = 16; |
| 96 | + } else if (isa<QInt32Type>(dtype)) { |
| 97 | + bitWidth = 32; |
| 98 | + } else { |
| 99 | + return failure(); |
| 100 | + } |
| 101 | + auto storageType = IntegerType::get(getContext(), bitWidth); |
| 102 | + |
| 103 | + // Minimum and maximum values for unsigned integer. |
| 104 | + int64_t minValue = 0; |
| 105 | + int64_t maxValue = (1LL << bitWidth) - 1; |
| 106 | + // Update the minimum and maximum for signed integer. |
| 107 | + if (flags) { |
| 108 | + // For signed integers (2's complement representation) |
| 109 | + minValue = -(1LL << (bitWidth - 1)); |
| 110 | + maxValue = (1LL << (bitWidth - 1)) - 1; |
| 111 | + } |
| 112 | + |
| 113 | + auto qty = quant::UniformQuantizedType::get( |
| 114 | + flags, storageType, inputElemType, scaleValue, zeroPointValue, minValue, |
| 115 | + maxValue); |
| 116 | + |
| 117 | + RankedTensorType outputType = cast<RankedTensorType>( |
| 118 | + getTypeConverter()->convertType(op->getResult(0).getType())); |
| 119 | + mlir::TensorType new_type = outputType.clone(qty); |
| 120 | + |
| 121 | + stablehlo::UniformQuantizeOp qunatize = |
| 122 | + rewriter.replaceOpWithNewOp<stablehlo::UniformQuantizeOp>( |
| 123 | + opUser, new_type, adaptor.getOperands().front()); |
| 124 | + |
| 125 | + opUser->getResults().front().replaceAllUsesWith( |
| 126 | + qunatize->getResults().front()); |
| 127 | + |
| 128 | + rewriter.eraseOp(op); |
| 129 | + return success(); |
| 130 | + } |
| 131 | +}; |
| 132 | +} // namespace |
| 133 | + |
| 134 | +// Aten_MakePerTensorQuantizedTensorOp |
| 135 | +// torch-mlir uses Aten_MakePerTensorQuantizedTensorOp and AtenDequantizeSelfOp |
| 136 | +// in pair to represent per channel dequantization. These two ops are converted |
| 137 | +// together to stablehlo.uniform_dequantize op |
| 138 | +namespace { |
| 139 | +class ConvertAten_MakePerTensorQuantizedTensorOp |
| 140 | + : public OpConversionPattern<Aten_MakePerTensorQuantizedTensorOp> { |
| 141 | +public: |
| 142 | + using OpConversionPattern::OpConversionPattern; |
| 143 | + |
| 144 | + LogicalResult |
| 145 | + matchAndRewrite(Aten_MakePerTensorQuantizedTensorOp op, OpAdaptor adaptor, |
| 146 | + ConversionPatternRewriter &rewriter) const override { |
| 147 | + auto opUser = *op.getResult().user_begin(); |
| 148 | + auto users = op.getResult().getUsers(); |
| 149 | + if (!(std::distance(users.begin(), users.end()) == 1) || |
| 150 | + !isa<AtenDequantizeSelfOp>(opUser)) { |
| 151 | + return failure(); |
| 152 | + } |
| 153 | + // [TODO] verify that zeroPoint and Scale matches with the input operand |
| 154 | + // type. |
| 155 | + RankedTensorType outputType = cast<RankedTensorType>( |
| 156 | + getTypeConverter()->convertType(opUser->getResult(0).getType())); |
| 157 | + |
| 158 | + rewriter.replaceOpWithNewOp<stablehlo::UniformDequantizeOp>( |
| 159 | + opUser, outputType, adaptor.getOperands().front()); |
| 160 | + |
| 161 | + rewriter.eraseOp(op); |
| 162 | + return success(); |
| 163 | + } |
| 164 | +}; |
| 165 | +} // namespace |
| 166 | + |
| 167 | +namespace { |
| 168 | +class ConvertAtenQuantizePerChannelOp |
| 169 | + : public OpConversionPattern<AtenQuantizePerChannelOp> { |
| 170 | +public: |
| 171 | + using OpConversionPattern::OpConversionPattern; |
| 172 | + |
| 173 | + LogicalResult |
| 174 | + matchAndRewrite(AtenQuantizePerChannelOp op, OpAdaptor adaptor, |
| 175 | + ConversionPatternRewriter &rewriter) const override { |
| 176 | + auto *zeroPoints = op.getZeroPoints().getDefiningOp(); |
| 177 | + if (!zeroPoints || !isa<ValueTensorLiteralOp>(zeroPoints)) { |
| 178 | + return failure(); |
| 179 | + } |
| 180 | + auto zeroPointsOp = mlir::cast<ValueTensorLiteralOp>(zeroPoints); |
| 181 | + |
| 182 | + llvm::SmallVector<int64_t, 4> zeroPointsVec; |
| 183 | + for (auto zp : zeroPointsOp.getValue().getValues<llvm::APInt>()) { |
| 184 | + zeroPointsVec.emplace_back(zp.getSExtValue()); |
| 185 | + } |
| 186 | + |
| 187 | + auto scales = op.getScales().getDefiningOp(); |
| 188 | + if (!scales || !isa<ValueTensorLiteralOp>(scales)) { |
| 189 | + return failure(); |
| 190 | + } |
| 191 | + |
| 192 | + llvm::SmallVector<double, 4> scalesVec; |
| 193 | + auto scalesOp = mlir::cast<ValueTensorLiteralOp>(scales); |
| 194 | + for (auto scale : scalesOp.getValue().getValues<llvm::APFloat>()) { |
| 195 | + scalesVec.emplace_back(scale.convertToDouble()); |
| 196 | + } |
| 197 | + |
| 198 | + auto axis = op.getAxis().getDefiningOp(); |
| 199 | + if (!axis || !isa<ConstantIntOp>(axis)) { |
| 200 | + return failure(); |
| 201 | + } |
| 202 | + auto axisOp = mlir::cast<ConstantIntOp>(axis); |
| 203 | + auto axisValue = axisOp.getValueAttr().getInt(); |
| 204 | + |
| 205 | + auto users = op.getResult().getUsers(); |
| 206 | + auto opUser = *op.getResult().user_begin(); |
| 207 | + if (!(std::distance(users.begin(), users.end()) == 1) || |
| 208 | + !isa<AtenIntReprOp>(opUser)) { |
| 209 | + return failure(); |
| 210 | + } |
| 211 | + |
| 212 | + auto inputElemType = |
| 213 | + mlir::cast<RankedTensorType>( |
| 214 | + getTypeConverter()->convertType(op.getOperands().front().getType())) |
| 215 | + .getElementType(); |
| 216 | + |
| 217 | + mlir::Type dtype = |
| 218 | + cast<ValueTensorType>(op->getResult(0).getType()).getDtype(); |
| 219 | + int32_t bitWidth = 0; |
| 220 | + int32_t flags = quant::QuantizationFlags::FlagValue::Signed; |
| 221 | + if (isa<QUInt8Type>(dtype)) { |
| 222 | + bitWidth = 8; |
| 223 | + flags = 0; |
| 224 | + } else if (isa<QInt8Type>(dtype)) { |
| 225 | + bitWidth = 8; |
| 226 | + } else if (isa<QInt16Type>(dtype)) { |
| 227 | + bitWidth = 16; |
| 228 | + } else if (isa<QInt32Type>(dtype)) { |
| 229 | + bitWidth = 32; |
| 230 | + } else { |
| 231 | + return failure(); |
| 232 | + } |
| 233 | + auto storageType = IntegerType::get(getContext(), bitWidth); |
| 234 | + |
| 235 | + // Minimum and maximum values for unsigned integer. |
| 236 | + int64_t minValue = 0; |
| 237 | + int64_t maxValue = (1LL << bitWidth) - 1; |
| 238 | + // Update the minimum and maximum for signed integer. |
| 239 | + if (flags) { |
| 240 | + // For signed integers (2's complement representation) |
| 241 | + minValue = -(1LL << (bitWidth - 1)); |
| 242 | + maxValue = (1LL << (bitWidth - 1)) - 1; |
| 243 | + } |
| 244 | + |
| 245 | + auto qty = quant::UniformQuantizedPerAxisType::get( |
| 246 | + flags, storageType, inputElemType, scalesVec, zeroPointsVec, axisValue, |
| 247 | + minValue, maxValue); |
| 248 | + |
| 249 | + RankedTensorType outputType = cast<RankedTensorType>( |
| 250 | + getTypeConverter()->convertType(op->getResult(0).getType())); |
| 251 | + mlir::TensorType new_type = outputType.clone(qty); |
| 252 | + |
| 253 | + stablehlo::UniformQuantizeOp quantize = |
| 254 | + rewriter.replaceOpWithNewOp<stablehlo::UniformQuantizeOp>( |
| 255 | + opUser, new_type, adaptor.getOperands().front()); |
| 256 | + |
| 257 | + opUser->getResults().front().replaceAllUsesWith( |
| 258 | + quantize->getResults().front()); |
| 259 | + |
| 260 | + rewriter.eraseOp(op); |
| 261 | + return success(); |
| 262 | + } |
| 263 | +}; |
| 264 | +} // namespace |
| 265 | + |
| 266 | +namespace { |
| 267 | +class ConvertAten_MakePerChannelQuantizedTensorOp |
| 268 | + : public OpConversionPattern<Aten_MakePerChannelQuantizedTensorOp> { |
| 269 | +public: |
| 270 | + using OpConversionPattern::OpConversionPattern; |
| 271 | + |
| 272 | + LogicalResult |
| 273 | + matchAndRewrite(Aten_MakePerChannelQuantizedTensorOp op, OpAdaptor adaptor, |
| 274 | + ConversionPatternRewriter &rewriter) const override { |
| 275 | + auto opUser = *op.getResult().user_begin(); |
| 276 | + auto users = op.getResult().getUsers(); |
| 277 | + if (!(std::distance(users.begin(), users.end()) == 1) || |
| 278 | + !isa<AtenDequantizeSelfOp>(opUser)) { |
| 279 | + return failure(); |
| 280 | + } |
| 281 | + // [TODO] verify that zeroPoint and Scale matches with the input operand |
| 282 | + // type. |
| 283 | + RankedTensorType outputType = cast<RankedTensorType>( |
| 284 | + getTypeConverter()->convertType(opUser->getResult(0).getType())); |
| 285 | + |
| 286 | + rewriter.replaceOpWithNewOp<stablehlo::UniformDequantizeOp>( |
| 287 | + opUser, outputType, adaptor.getOperands().front()); |
| 288 | + |
| 289 | + rewriter.eraseOp(op); |
| 290 | + return success(); |
| 291 | + } |
| 292 | +}; |
| 293 | +} // namespace |
| 294 | + |
| 295 | +void mlir::torch::torch_to_stablehlo::populateUncategorizedPatternsAndLegality( |
| 296 | + TypeConverter &typeConverter, RewritePatternSet &patterns, |
| 297 | + ConversionTarget &target, const TorchToStablehloOptions &options) { |
| 298 | + MLIRContext *context = patterns.getContext(); |
| 299 | + |
| 300 | + target.addIllegalOp<AtenQuantizePerTensorOp>(); |
| 301 | + target.addIllegalOp<AtenIntReprOp>(); |
| 302 | + patterns.add<ConvertAtenQuantizePerTensorOp>(typeConverter, context); |
| 303 | + target.addIllegalOp<Aten_MakePerTensorQuantizedTensorOp>(); |
| 304 | + target.addIllegalOp<AtenDequantizeSelfOp>(); |
| 305 | + patterns.add<ConvertAten_MakePerTensorQuantizedTensorOp>(typeConverter, |
| 306 | + context); |
| 307 | + target.addIllegalOp<AtenQuantizePerChannelOp>(); |
| 308 | + patterns.add<ConvertAtenQuantizePerChannelOp>(typeConverter, context); |
| 309 | + patterns.add<ConvertAten_MakePerChannelQuantizedTensorOp>(typeConverter, |
| 310 | + context); |
| 311 | +} |
0 commit comments