Setting up all the SWE-Bench Verified images used to take over 200 GiB of storage and 100+ GiB of transfer.
Now it’s just:
- 31 GiB total storage (down from 206 GiB)
- 5 GiB network transfer (down from 100 GiB)
- ~ 5 minutes setup
Images follow the naming convention:
logicstar/sweb.eval.x86_64.<repo>_1776_<instance>
curl -L -# https://huggingface.co/LogicStar/SWE-Bench-Verified-Compressed/resolve/main/saved.tar.zst?download=true | zstd -d --long=31 --stdout | docker load curl -L -# https://huggingface.co/LogicStar/SWE-Bench-Verified-Compressed/resolve/main/saved.1.tar.zst?download=true | zstd -d --long=31 --stdout | podman load
curl -L -# https://huggingface.co/LogicStar/SWE-Bench-Verified-Compressed/resolve/main/saved.2.tar.zst?download=true | zstd -d --long=31 --stdout | podman load For faster downloads and parallelized loading, use the Hugging Face CLI to download the compressed OCI Layout and our load.py script to load the images in parallel:
# Clone the repo and cd into it
hf download LogicStar/SWE-Bench-Verified-Compressed layout.tar.zst --local-dir .
zstd -d --long=31 --stdout layout.tar.zst | tar -x -f -
python3 load.pyJust pass --namespace logicstar to the SWE-Bench harness. Example:
python -m swebench.harness.run_evaluation \
--dataset_name princeton-nlp/SWE-bench_Verified \
--predictions_path gold \
--max_workers 1 \
--run_id validate-gold \
--namespace logicstar