|
| 1 | +from __future__ import annotations |
| 2 | +from typing import Callable |
| 3 | + |
| 4 | +import torch |
| 5 | +from torch import atan2, sqrt |
| 6 | +from torch.optim.optimizer import Optimizer |
| 7 | + |
| 8 | +# functions |
| 9 | + |
| 10 | +def exists(val): |
| 11 | + return val is not None |
| 12 | + |
| 13 | +def default(val, d): |
| 14 | + return val if exists(val) else d |
| 15 | + |
| 16 | +# muon related |
| 17 | + |
| 18 | +def newtonschulz5( |
| 19 | + t, |
| 20 | + steps = 5, |
| 21 | + eps = 1e-7, |
| 22 | + coefs = (3.4445, -4.7750, 2.0315) |
| 23 | +): |
| 24 | + if t.ndim <= 3: |
| 25 | + return t |
| 26 | + |
| 27 | + shape = t.shape |
| 28 | + should_transpose = shape[-2] > shape[-1] |
| 29 | + |
| 30 | + if should_transpose: |
| 31 | + t = t.transpose(-1, -2) |
| 32 | + |
| 33 | + t, packed_shape = pack([t], '* i j') |
| 34 | + t = t / t.norm(dim = (-1, -2), keepdim = True).clamp(min = eps) |
| 35 | + |
| 36 | + a, b, c = coefs |
| 37 | + |
| 38 | + for _ in range(steps): |
| 39 | + A = t @ t.transpose(-1, -2) |
| 40 | + B = b * A + c * A @ A |
| 41 | + t = a * t + B @ t |
| 42 | + |
| 43 | + t, = unpack(t, packed_shape, '* i j') |
| 44 | + |
| 45 | + if should_transpose: |
| 46 | + t = t.transpose(-1, -2) |
| 47 | + |
| 48 | + return t |
| 49 | + |
| 50 | +# class |
| 51 | + |
| 52 | +class MuonAdamAtan2(Optimizer): |
| 53 | + def __init__( |
| 54 | + self, |
| 55 | + muon_params, |
| 56 | + params, |
| 57 | + lr = 1e-4, |
| 58 | + muon_lr = None, |
| 59 | + betas: tuple[float, float] = (0.9, 0.99), |
| 60 | + weight_decay = 0., |
| 61 | + regen_reg_rate = 0., |
| 62 | + decoupled_wd = False, |
| 63 | + cautious_factor = 1., # set to 0. for zeroing out any updates not in same direction as gradient as in https://arxiv.org/abs/2411.16085 |
| 64 | + a = 1.27, |
| 65 | + b = 1., |
| 66 | + muon_steps = 5, |
| 67 | + muon_newton_schulz5_coefs = (3.4445, -4.7750, 2.0315), |
| 68 | + muon_eps = 1e-7, |
| 69 | + remove_muon_params_from_params = True |
| 70 | + ): |
| 71 | + assert lr > 0. |
| 72 | + assert all([0. <= beta <= 1. for beta in betas]) |
| 73 | + assert weight_decay >= 0. |
| 74 | + assert regen_reg_rate >= 0. |
| 75 | + assert not (weight_decay > 0. and regen_reg_rate > 0.) |
| 76 | + assert 0. <= cautious_factor <= 1. |
| 77 | + |
| 78 | + self._init_lr = lr |
| 79 | + |
| 80 | + muon_lr = default(muon_lr, lr) |
| 81 | + self._init_muon_lr = muon_lr |
| 82 | + |
| 83 | + self.decoupled_wd = decoupled_wd |
| 84 | + |
| 85 | + defaults = dict( |
| 86 | + lr = lr, |
| 87 | + betas = betas, |
| 88 | + a = a, |
| 89 | + b = b, |
| 90 | + weight_decay = weight_decay, |
| 91 | + regen_reg_rate = regen_reg_rate, |
| 92 | + cautious_factor = cautious_factor, |
| 93 | + use_muon = False, |
| 94 | + muon_steps = muon_steps, |
| 95 | + muon_newton_schulz5_coefs = muon_newton_schulz5_coefs, |
| 96 | + muon_eps = muon_eps, |
| 97 | + ) |
| 98 | + |
| 99 | + if remove_muon_params_from_params: |
| 100 | + params = list(set(params) - set(muon_params)) |
| 101 | + |
| 102 | + param_groups = [ |
| 103 | + dict(params = params, lr = lr), |
| 104 | + dict(params = muon_params, lr = muon_lr, use_muon = True) |
| 105 | + ] |
| 106 | + |
| 107 | + super().__init__(param_groups, defaults) |
| 108 | + |
| 109 | + @torch.no_grad() |
| 110 | + def step( |
| 111 | + self, |
| 112 | + closure: Callable | None = None |
| 113 | + ): |
| 114 | + |
| 115 | + loss = None |
| 116 | + if exists(closure): |
| 117 | + with torch.enable_grad(): |
| 118 | + loss = closure() |
| 119 | + |
| 120 | + for group in self.param_groups: |
| 121 | + |
| 122 | + for p in filter(lambda p: exists(p.grad), group['params']): |
| 123 | + |
| 124 | + use_muon = group['use_muon'] |
| 125 | + |
| 126 | + grad, lr, wd, regen_rate, cautious_factor, beta1, beta2, a, b, state, init_lr, init_muon_lr = p.grad, group['lr'], group['weight_decay'], group['regen_reg_rate'], group['cautious_factor'], *group['betas'], group['a'], group['b'], self.state[p], self._init_lr, self._init_muon_lr |
| 127 | + |
| 128 | + param_init_lr = init_lr if not use_muon else init_muon_lr |
| 129 | + |
| 130 | + # maybe decoupled weight decay |
| 131 | + |
| 132 | + if self.decoupled_wd: |
| 133 | + wd /= param_init_lr |
| 134 | + |
| 135 | + # weight decay |
| 136 | + |
| 137 | + if wd > 0.: |
| 138 | + p.mul_(1. - lr * wd) |
| 139 | + |
| 140 | + # regenerative regularization from Kumar et al. https://arxiv.org/abs/2308.11958 |
| 141 | + |
| 142 | + if regen_rate > 0. and 'param_init' in state: |
| 143 | + param_init = state['param_init'] |
| 144 | + p.lerp_(param_init, lr / init_lr * regen_rate) |
| 145 | + |
| 146 | + # init state if needed |
| 147 | + |
| 148 | + if len(state) == 0: |
| 149 | + state['steps'] = 0 |
| 150 | + state['exp_avg'] = torch.zeros_like(grad) |
| 151 | + |
| 152 | + if not use_muon: |
| 153 | + state['exp_avg_sq'] = torch.zeros_like(grad) |
| 154 | + |
| 155 | + if regen_rate > 0.: |
| 156 | + state['param_init'] = p.clone() |
| 157 | + |
| 158 | + # get some of the states |
| 159 | + |
| 160 | + exp_avg, steps = state['exp_avg'], state['steps'] |
| 161 | + |
| 162 | + steps += 1 |
| 163 | + |
| 164 | + # bias corrections |
| 165 | + |
| 166 | + bias_correct1 = 1. - beta1 ** steps |
| 167 | + |
| 168 | + if not use_muon: |
| 169 | + exp_avg_sq = state['exp_avg_sq'] |
| 170 | + bias_correct2 = 1. - beta2 ** steps |
| 171 | + |
| 172 | + # decay running averages |
| 173 | + |
| 174 | + exp_avg.lerp_(grad, 1. - beta1) |
| 175 | + |
| 176 | + if not use_muon: |
| 177 | + exp_avg_sq.lerp_(grad * grad, 1. - beta2) |
| 178 | + |
| 179 | + # the following line is the proposed change to the update rule |
| 180 | + # using atan2 instead of a division with epsilon in denominator |
| 181 | + # a * atan2(exp_avg / bias_correct1, b * sqrt(exp_avg_sq / bias_correct2)) |
| 182 | + |
| 183 | + den = exp_avg_sq.mul(b * b / bias_correct2).sqrt_() |
| 184 | + update = exp_avg.mul(1. / bias_correct1).atan2_(den) |
| 185 | + |
| 186 | + # maybe cautious update - algorithm 2 in https://arxiv.org/abs/2411.16085 |
| 187 | + else: |
| 188 | + |
| 189 | + muon_steps, muon_coefs, muon_eps = group['muon_steps'], group['muon_newton_schulz5_coefs'], group['muon_eps'] |
| 190 | + |
| 191 | + # Muon from Keller Jordan |
| 192 | + # https://kellerjordan.github.io/posts/muon/ |
| 193 | + |
| 194 | + update = newtonschulz5( |
| 195 | + exp_avg, |
| 196 | + steps = muon_steps, |
| 197 | + coefs = muon_coefs, |
| 198 | + eps = muon_eps |
| 199 | + ) |
| 200 | + |
| 201 | + if cautious_factor < 1.: |
| 202 | + align_mask = (update * grad) > 0 |
| 203 | + scale = torch.where(align_mask, torch.ones_like(grad), cautious_factor) |
| 204 | + update *= (scale / scale.mean().clamp(min = 1e-5)) |
| 205 | + |
| 206 | + # update parameters |
| 207 | + |
| 208 | + p.add_(update, alpha = -lr * a) |
| 209 | + |
| 210 | + # increment steps |
| 211 | + |
| 212 | + state['steps'] = steps |
| 213 | + |
| 214 | + return loss |
0 commit comments