You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<spanclass="sig-prename descclassname"><spanclass="pre">orthopoly.spherical_harmonic.</span></span><spanclass="sig-name descname"><spanclass="pre">noise</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">N</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">p</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">tol</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">1e-12</span></span></em><spanclass="sig-paren">)</span><aclass="headerlink" href="#orthopoly.spherical_harmonic.noise" title="Permalink to this definition">¶</a></dt>
486
+
<spanclass="sig-prename descclassname"><spanclass="pre">orthopoly.spherical_harmonic.</span></span><spanclass="sig-name descname"><spanclass="pre">noise</span></span><spanclass="sig-paren">(</span><emclass="sig-param"><spanclass="n"><spanclass="pre">N</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">p</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">tol</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">1e-12</span></span></em>, <emclass="sig-param"><spanclass="n"><spanclass="pre">seed</span></span><spanclass="o"><spanclass="pre">=</span></span><spanclass="default_value"><spanclass="pre">1</span></span></em><spanclass="sig-paren">)</span><aclass="headerlink" href="#orthopoly.spherical_harmonic.noise" title="Permalink to this definition">¶</a></dt>
487
487
<dd><p>Generates the coefficients for a random triangular spherical harmonic expansion with a specific relationship between the degree and the power spectral density (noise)</p>
<li><p><strong>tol</strong> (<em>float</em>) – bisection method relative tolerance when normalizing across a single degree’s coefficients for the total power</p></li>
502
+
<li><p><strong>seed</strong> (<em>int</em>) – optional seed for random number generator</p></li>
0 commit comments