Skip to content

DistributedModelParallel sets "requires_grad" to False for EmbeddingCollection with sharding_types=["row_wise"], compute_kernels=["fused"], #3271

@farapart

Description

@farapart

I’m experiencing an issue while managing a large-scale embedding vocabulary using the EmbeddingCollection feature. Specifically, when I configure the EmbeddingShardingPlanner with the “row_wise” sharding type and fused compute kernels, the resulting DistributedModelParallel instance sets the requires_grad attribute of the embedding parameters to False. This prevents the gradients from being updated during training.

Image

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions