Skip to content

Commit f1e66fb

Browse files
authored
update docs and urls (#174)
1 parent 0bfe42f commit f1e66fb

File tree

7 files changed

+24
-18
lines changed

7 files changed

+24
-18
lines changed

README.md

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44

55
# TorchXRayVision
66

7-
| <img src="https://raw.githubusercontent.com/mlmed/torchxrayvision/master/docs/torchxrayvision-logo.png" width="300px"/> | ([🎬 promo video](https://www.youtube.com/watch?v=Rl7xz0uULGQ)) <br>[<img src="http://img.youtube.com/vi/Rl7xz0uULGQ/0.jpg" width="400px"/>)](http://www.youtube.com/watch?v=Rl7xz0uULGQ "Video Title") |
7+
| <img src="https://raw.githubusercontent.com/mlmed/torchxrayvision/main/docs/torchxrayvision-logo.png" width="300px"/> | ([🎬 promo video](https://www.youtube.com/watch?v=Rl7xz0uULGQ)) <br>[<img src="http://img.youtube.com/vi/Rl7xz0uULGQ/0.jpg" width="400px"/>)](http://www.youtube.com/watch?v=Rl7xz0uULGQ "Video Title") |
88
|---|---|
99

1010
# What is it?
@@ -67,7 +67,7 @@ dict(zip(model.pathologies,outputs[0].detach().numpy()))
6767

6868
```
6969

70-
A sample script to process images usings pretrained models is [process_image.py](https://github.com/mlmed/torchxrayvision/blob/master/scripts/process_image.py)
70+
A sample script to process images usings pretrained models is [process_image.py](https://github.com/mlmed/torchxrayvision/blob/main/scripts/process_image.py)
7171

7272
```
7373
$ python3 process_image.py ../tests/00000001_000.png -resize
@@ -92,7 +92,7 @@ $ python3 process_image.py ../tests/00000001_000.png -resize
9292
9393
```
9494

95-
## Models ([demo notebook](https://github.com/mlmed/torchxrayvision/blob/master/scripts/xray_models.ipynb))
95+
## Models ([demo notebook](https://github.com/mlmed/torchxrayvision/blob/main/scripts/xray_models.ipynb))
9696

9797
Specify weights for pretrained models (currently all DenseNet121)
9898
Note: Each pretrained model has 18 outputs. The `all` model has every output trained. However, for the other weights some targets are not trained and will predict randomly becuase they do not exist in the training dataset. The only valid outputs are listed in the field `{dataset}.pathologies` on the dataset that corresponds to the weights.
@@ -153,7 +153,7 @@ seg_model.targets # ['Left Clavicle', 'Right Clavicle', 'Left Scapula', 'Right S
153153
![](docs/segmentation-pspnet.png)
154154

155155
## Datasets
156-
[View docstrings for more detail on each dataset](https://github.com/mlmed/torchxrayvision/blob/master/torchxrayvision/datasets.py) and [Demo notebook](https://github.com/mlmed/torchxrayvision/blob/master/scripts/xray_datasets.ipynb) and [Example loading script](https://github.com/mlmed/torchxrayvision/blob/master/scripts/dataset_utils.py)
156+
[View docstrings for more detail on each dataset](https://github.com/mlmed/torchxrayvision/blob/main/torchxrayvision/datasets.py) and [Demo notebook](https://github.com/mlmed/torchxrayvision/blob/main/scripts/xray_datasets.ipynb) and [Example loading script](https://github.com/mlmed/torchxrayvision/blob/main/scripts/dataset_utils.py)
157157

158158
```python3
159159
transform = torchvision.transforms.Compose([xrv.datasets.XRayCenterCrop(),
@@ -222,7 +222,7 @@ relabel_dataset will align labels to have the same order as the pathologies argu
222222
xrv.datasets.relabel_dataset(xrv.datasets.default_pathologies , d_nih) # has side effects
223223
```
224224

225-
specify a subset of views ([demo notebook](https://github.com/mlmed/torchxrayvision/blob/master/scripts/xray_datasets_views.ipynb))
225+
specify a subset of views ([demo notebook](https://github.com/mlmed/torchxrayvision/blob/main/scripts/xray_datasets_views.ipynb))
226226
```python3
227227
d_kaggle = xrv.datasets.RSNA_Pneumonia_Dataset(imgpath="...",
228228
views=["PA","AP","AP Supine"])
@@ -256,7 +256,7 @@ CheX_Dataset num_samples=191010 views=['PA', 'AP']
256256
'Support Devices': {0.0: 21757, 1.0: 99747}}
257257
```
258258

259-
## Pathology masks ([demo notebook](https://github.com/mlmed/torchxrayvision/blob/master/scripts/xray_masks.ipynb))
259+
## Pathology masks ([demo notebook](https://github.com/mlmed/torchxrayvision/blob/main/scripts/xray_masks.ipynb))
260260

261261
Masks are available in the following datasets:
262262
```python3
@@ -282,14 +282,14 @@ True 6012
282282
# There may be more than one mask per sample. But only one per pathology.
283283
sample["pathology_masks"][d_rsna.pathologies.index("Lung Opacity")]
284284
```
285-
![](https://raw.githubusercontent.com/mlmed/torchxrayvision/master/docs/pathology-mask-rsna2.png)
286-
![](https://raw.githubusercontent.com/mlmed/torchxrayvision/master/docs/pathology-mask-rsna3.png)
285+
![](https://raw.githubusercontent.com/mlmed/torchxrayvision/main/docs/pathology-mask-rsna2.png)
286+
![](https://raw.githubusercontent.com/mlmed/torchxrayvision/main/docs/pathology-mask-rsna3.png)
287287

288288
it also works with data_augmentation if you pass in `data_aug=data_transforms` to the dataloader. The random seed is matched to align calls for the image and the mask.
289289

290-
![](https://raw.githubusercontent.com/mlmed/torchxrayvision/master/docs/pathology-mask-rsna614-da.png)
290+
![](https://raw.githubusercontent.com/mlmed/torchxrayvision/main/docs/pathology-mask-rsna614-da.png)
291291

292-
## Distribution shift tools ([demo notebook](https://github.com/mlmed/torchxrayvision/blob/master/scripts/xray_datasets-CovariateShift.ipynb))
292+
## Distribution shift tools ([demo notebook](https://github.com/mlmed/torchxrayvision/blob/main/scripts/xray_datasets-CovariateShift.ipynb))
293293

294294
The class `xrv.datasets.CovariateDataset` takes two datasets and two
295295
arrays representing the labels. The samples will be returned with the
@@ -353,9 +353,9 @@ Medical Imaging with Deep Learning 2020 (Online: https://arxiv.org/abs/2002.0249
353353
## Supporters/Sponsors
354354

355355

356-
| <a href="https://cifar.ca/"><img width="300px" src="https://raw.githubusercontent.com/mlmed/torchxrayvision/master/docs/cifar-logo.png" /></a><br> CIFAR (Canadian Institute for Advanced Research) | <a href="https://mila.quebec/"><img width="300px" src="https://raw.githubusercontent.com/mlmed/torchxrayvision/master/docs/mila-logo.png" /></a><br> Mila, Quebec AI Institute, University of Montreal |
356+
| <a href="https://cifar.ca/"><img width="300px" src="https://raw.githubusercontent.com/mlmed/torchxrayvision/main/docs/cifar-logo.png" /></a><br> CIFAR (Canadian Institute for Advanced Research) | <a href="https://mila.quebec/"><img width="300px" src="https://raw.githubusercontent.com/mlmed/torchxrayvision/main/docs/mila-logo.png" /></a><br> Mila, Quebec AI Institute, University of Montreal |
357357
|:---:|:---:|
358-
| <a href="http://aimi.stanford.edu/"><img width="300px" src="https://raw.githubusercontent.com/mlmed/torchxrayvision/master/docs/AIMI-stanford.jpg" /></a> <br><b>Stanford University's Center for <br>Artificial Intelligence in Medicine & Imaging</b> | <a href="http://www.carestream.com/"><img width="300px" src="https://raw.githubusercontent.com/mlmed/torchxrayvision/master/docs/carestream-logo.png" /></a> <br><b>Carestream Health</b> |
358+
| <a href="http://aimi.stanford.edu/"><img width="300px" src="https://raw.githubusercontent.com/mlmed/torchxrayvision/main/docs/AIMI-stanford.jpg" /></a> <br><b>Stanford University's Center for <br>Artificial Intelligence in Medicine & Imaging</b> | <a href="http://www.carestream.com/"><img width="300px" src="https://raw.githubusercontent.com/mlmed/torchxrayvision/main/docs/carestream-logo.png" /></a> <br><b>Carestream Health</b> |
359359

360360

361361

docs/source/conf.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -87,7 +87,7 @@
8787
"display_github": True,
8888
"github_user": "mlmed", # Username
8989
"github_repo": "torchxrayvision", # Repo name
90-
"github_version": "master", # Version
90+
"github_version": "main", # Version
9191
"conf_py_path": "/docs/source/", # Path in the checkout to the docs root
9292
"last_updated": True,
9393
# "commit": False,

docs/source/models.rst

Lines changed: 7 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
Models
33
======
44

5-
Model benchmarks for classifiers are `here <https://github.com/mlmed/torchxrayvision/blob/master/BENCHMARKS.md>`_
5+
Model benchmarks for classifiers are `here <https://github.com/mlmed/torchxrayvision/blob/main/BENCHMARKS.md>`_
66

77

88
Model Interface
@@ -68,3 +68,9 @@ Xinario View Model
6868

6969
.. automodule:: torchxrayvision.baseline_models.xinario
7070
:members:
71+
72+
Mira Sex Model
73+
++++++++++++++++++
74+
75+
.. automodule:: torchxrayvision.baseline_models.mira
76+
:members:

torchxrayvision/baseline_models/chestx_det/__init__.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@ def _convert_state_dict(state_dict):
2727
class PSPNet(nn.Module):
2828
"""ChestX-Det Segmentation Model
2929
30-
You can load pretrained anatomical segmentation models. `Demo Notebook <https://github.com/mlmed/torchxrayvision/blob/master/scripts/segmentation.ipynb>`_
30+
You can load pretrained anatomical segmentation models. `Demo Notebook <https://github.com/mlmed/torchxrayvision/blob/main/scripts/segmentation.ipynb>`_
3131
3232
.. code-block:: python
3333

torchxrayvision/baseline_models/emory_hiti/__init__.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ class RaceModel(nn.Module):
1515
to train this model. The native resolution of the model is 320x320. Images
1616
are scaled automatically.
1717
18-
`Demo notebook <https://github.com/mlmed/torchxrayvision/blob/master/scripts/race_prediction.ipynb>`__
18+
`Demo notebook <https://github.com/mlmed/torchxrayvision/blob/main/scripts/race_prediction.ipynb>`__
1919
2020
.. code-block:: python
2121

torchxrayvision/baseline_models/riken/__init__.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ class AgeModel(nn.Module):
1717
The native resolution of the model is 320x320. Images are scaled
1818
automatically.
1919
20-
`Demo notebook <https://github.com/mlmed/torchxrayvision/blob/master/scripts/cxr_age_prediction.ipynb>`__
20+
`Demo notebook <https://github.com/mlmed/torchxrayvision/blob/main/scripts/cxr_age_prediction.ipynb>`__
2121
2222
.. code-block:: python
2323

torchxrayvision/baseline_models/xinario/__init__.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ class ViewModel(nn.Module):
1616
The native resolution of the model is 320x320. Images are scaled
1717
automatically.
1818
19-
`Demo notebook <https://github.com/mlmed/torchxrayvision/blob/master/scripts/view_classifier.ipynb>`__
19+
`Demo notebook <https://github.com/mlmed/torchxrayvision/blob/main/scripts/view_classifier.ipynb>`__
2020
2121
.. code-block:: python
2222

0 commit comments

Comments
 (0)