|
| 1 | +<!doctype html> |
| 2 | +<html lang="en"> |
| 3 | +<head> |
| 4 | +<meta charset="utf-8"> |
| 5 | +<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1"> |
| 6 | +<meta name="generator" content="pdoc3 0.11.6"> |
| 7 | +<title>SWtools_ext_LE API documentation</title> |
| 8 | +<meta name="description" content="SWtools_ext_LE_v2.py …"> |
| 9 | +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/13.0.0/sanitize.min.css" integrity="sha512-y1dtMcuvtTMJc1yPgEqF0ZjQbhnc/bFhyvIyVNb9Zk5mIGtqVaAB1Ttl28su8AvFMOY0EwRbAe+HCLqj6W7/KA==" crossorigin> |
| 10 | +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/13.0.0/typography.min.css" integrity="sha512-Y1DYSb995BAfxobCkKepB1BqJJTPrOp3zPL74AWFugHHmmdcvO+C48WLrUOlhGMc0QG7AE3f7gmvvcrmX2fDoA==" crossorigin> |
| 11 | +<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/styles/default.min.css" crossorigin> |
| 12 | +<style>:root{--highlight-color:#fe9}.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:1.5em;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:2em 0 .50em 0}h3{font-size:1.4em;margin:1.6em 0 .7em 0}h4{margin:0;font-size:105%}h1:target,h2:target,h3:target,h4:target,h5:target,h6:target{background:var(--highlight-color);padding:.2em 0}a{color:#058;text-decoration:none;transition:color .2s ease-in-out}a:visited{color:#503}a:hover{color:#b62}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900;font-weight:bold}pre code{font-size:.8em;line-height:1.4em;padding:1em;display:block}code{background:#f3f3f3;font-family:"DejaVu Sans Mono",monospace;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}dt:target .name{background:var(--highlight-color)}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source > summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible;min-width:max-content}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}td{padding:0 .5em}.admonition{padding:.1em 1em;margin:1em 0}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style> |
| 13 | +<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul ul{padding-left:1em}.toc > ul > li{margin-top:.5em}}</style> |
| 14 | +<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style> |
| 15 | +<script defer src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/highlight.min.js" integrity="sha512-D9gUyxqja7hBtkWpPWGt9wfbfaMGVt9gnyCvYa+jojwwPHLCzUm5i8rpk7vD7wNee9bA35eYIjobYPaQuKS1MQ==" crossorigin></script> |
| 16 | +<script>window.addEventListener('DOMContentLoaded', () => { |
| 17 | +hljs.configure({languages: ['bash', 'css', 'diff', 'graphql', 'ini', 'javascript', 'json', 'plaintext', 'python', 'python-repl', 'rust', 'shell', 'sql', 'typescript', 'xml', 'yaml']}); |
| 18 | +hljs.highlightAll(); |
| 19 | +/* Collapse source docstrings */ |
| 20 | +setTimeout(() => { |
| 21 | +[...document.querySelectorAll('.hljs.language-python > .hljs-string')] |
| 22 | +.filter(el => el.innerHTML.length > 200 && ['"""', "'''"].includes(el.innerHTML.substring(0, 3))) |
| 23 | +.forEach(el => { |
| 24 | +let d = document.createElement('details'); |
| 25 | +d.classList.add('hljs-string'); |
| 26 | +d.innerHTML = '<summary>"""</summary>' + el.innerHTML.substring(3); |
| 27 | +el.replaceWith(d); |
| 28 | +}); |
| 29 | +}, 100); |
| 30 | +})</script> |
| 31 | +</head> |
| 32 | +<body> |
| 33 | +<main> |
| 34 | +<article id="content"> |
| 35 | +<header> |
| 36 | +<h1 class="title">Module <code>SWtools_ext_LE</code></h1> |
| 37 | +</header> |
| 38 | +<section id="section-intro"> |
| 39 | +<p>SWtools_ext_LE_v2.py</p> |
| 40 | +<p>SWtools extension module implementing functions for the linear stability |
| 41 | +analysis of generalized nonlinear Schrödinger equations. |
| 42 | +The analysis proceeds |
| 43 | +by calculating the linearized eigenspectrum (LE), describing small-amplitude |
| 44 | +perturbations atop a solitary wave.</p> |
| 45 | +<h2 id="note">Note</h2> |
| 46 | +<p>This module implements two methods for solving for the LE of genarlized |
| 47 | +nonlinear Schrödinger equations with different restictions:</p> |
| 48 | +<p>LE_GNSE: this function is tailored towards a GNSE with with generic nonlinear |
| 49 | +functional and linear differential operator of second order in the transverse |
| 50 | +coordinate.</p> |
| 51 | +<p>LE_HONSE: this function is tailored towards a GNSE with cubic nonlinear |
| 52 | +functional and linear differential operator including dispersion of orders two, |
| 53 | +three and four.</p> |
| 54 | +<div class="admonition codeauthor"> |
| 55 | +<p class="admonition-title">Codeauthor: Oliver Melchert <a href="mailto:melchert@iqo.uni-hannover.de">melchert@iqo.uni-hannover.de</a></p> |
| 56 | +</div> |
| 57 | +</section> |
| 58 | +<section> |
| 59 | +</section> |
| 60 | +<section> |
| 61 | +</section> |
| 62 | +<section> |
| 63 | +<h2 class="section-title" id="header-functions">Functions</h2> |
| 64 | +<dl> |
| 65 | +<dt id="SWtools_ext_LE.LE_GNSE"><code class="name flex"> |
| 66 | +<span>def <span class="ident">LE_GNSE</span></span>(<span>xi, U, kap, c2, F_fun, F1_fun)</span> |
| 67 | +</code></dt> |
| 68 | +<dd> |
| 69 | +<details class="source"> |
| 70 | +<summary> |
| 71 | +<span>Expand source code</span> |
| 72 | +</summary> |
| 73 | +<pre><code class="python">def LE_GNSE(xi, U, kap, c2, F_fun, F1_fun): |
| 74 | + """Linearized eigenspectrum for the GNSE. |
| 75 | + |
| 76 | + Solves the eigenvalue problem for the linear stability matrix of a GNSE |
| 77 | + with generic nonlinear functional and linear differential operator of |
| 78 | + second order in the transverse coordinate [P1998,K1998]. |
| 79 | + |
| 80 | + Note |
| 81 | + ---- |
| 82 | + Assumes that the soliton solution is given by an even, positive, |
| 83 | + single-humped function U, see [P1998]. |
| 84 | + |
| 85 | + References |
| 86 | + ---------- |
| 87 | + [P1998] D. E. Pelinovsky, Y. S. Kivshar, V. V. Afanasjev, Internal modes of |
| 88 | + envelope solitons, Physica D 116 (1) (1998) 121–142, |
| 89 | + https://doi.org/10.1016/S0167-2789(98)80010-9. |
| 90 | + |
| 91 | + [K1998] Y. S. Kivshar, D. E. Pelinovsky, T. Cretegny, M. Peyrard, Internal |
| 92 | + modes of solitary waves, Phys. Rev. Lett. 80 (1998) 5032, |
| 93 | + https://doi.org/10.1103/PhysRevLett.80.5032. |
| 94 | + |
| 95 | + Parameters |
| 96 | + ---------- |
| 97 | + xi : array_like |
| 98 | + Disrete transverse coordinates. |
| 99 | + U : array_like |
| 100 | + Solitary wave solution. |
| 101 | + kap : float |
| 102 | + Solitary wave wavenumber. |
| 103 | + c2 : float |
| 104 | + Constant coefficient of the linear differential operator part |
| 105 | + F_fun : function |
| 106 | + Nonlinear functional. |
| 107 | + F1_fun : function |
| 108 | + Derivative of the nonlinear functional. |
| 109 | + """ |
| 110 | + |
| 111 | + # -- COMPOSE MATRIX DETERMINING EVP FOR THE PERTURBATION MODES |
| 112 | + # ... PREPARE COEFFICIENTS FOR FINITE-DIFFERENCE MATRIX |
| 113 | + dxi = xi[1]-xi[0] |
| 114 | + dxi2= dxi**2 |
| 115 | + I = np.abs(U)**2 |
| 116 | + |
| 117 | + # ... SET UP DIAGONALS |
| 118 | + D0 = -(30/12)*c2/dxi2*np.ones(xi.size) |
| 119 | + D1 = (16/12)*c2/dxi2*np.ones(xi.size-1) |
| 120 | + D2 = -( 1/12)*c2/dxi2*np.ones(xi.size-2) |
| 121 | + |
| 122 | + # ... SET UP SPARSE FINITE DIFFERENCE MATRICES |
| 123 | + Z0 = diags([np.zeros_like(U)], [0]).toarray() |
| 124 | + L0 = diags([D0 + kap - F_fun(I), D1, D2, D1, D2], [0,-1,-2,1,2]).toarray() |
| 125 | + L1 = diags([D0 + kap - F_fun(I) - 2*I*F1_fun(I), D1, D2, D1, D2], [0,-1,-2,1,2]).toarray() |
| 126 | + |
| 127 | + # ... SET UP AUXILIARY MATRIX |
| 128 | + M = np.block([ |
| 129 | + [ Z0, L0], |
| 130 | + [ L1, Z0] |
| 131 | + ]) |
| 132 | + |
| 133 | + # ... SOLVE EIGENVALUE PROBLEM |
| 134 | + e_, v_ = eig(M) |
| 135 | + |
| 136 | + # -- FILTER FOR EIGENVALUES WITHIN GAP OF CONTINUOUS SPECTRUM |
| 137 | + # ... DETERMINE ONSET OF CONTINUOUS-WAVE BANDS |
| 138 | + Lam_max = kap |
| 139 | + # ... FILTER EIGENVALUES AND EIGENFUNCTIONS |
| 140 | + Lam_ = 1j*e_ |
| 141 | + Lam = Lam_[ np.abs(np.imag(Lam_))<kap] |
| 142 | + v = v_[:, np.abs(np.imag(Lam_))<kap] |
| 143 | + # ... SEPARATE THE MODES AND MAKE INDEXING MORE INTUITIVE |
| 144 | + f = np.asarray([v[:xi.size,n] for n in range(Lam.size)]) |
| 145 | + g = np.asarray([v[xi.size:,n] for n in range(Lam.size)]) |
| 146 | + # ... GET ORDER FOR INCREASING MAGNITUDE OF IMAGINARY PART |
| 147 | + idx_srt = np.flip(np.argsort(np.abs(np.imag(Lam)))) |
| 148 | + |
| 149 | + return kap, Lam[idx_srt], f[idx_srt], g[idx_srt]</code></pre> |
| 150 | +</details> |
| 151 | +<div class="desc"><p>Linearized eigenspectrum for the GNSE.</p> |
| 152 | +<p>Solves the eigenvalue problem for the linear stability matrix of a GNSE |
| 153 | +with generic nonlinear functional and linear differential operator of |
| 154 | +second order in the transverse coordinate [P1998,K1998].</p> |
| 155 | +<h2 id="note">Note</h2> |
| 156 | +<p>Assumes that the soliton solution is given by an even, positive, |
| 157 | +single-humped function U, see [P1998].</p> |
| 158 | +<h2 id="references">References</h2> |
| 159 | +<p>[P1998] D. E. Pelinovsky, Y. S. Kivshar, V. V. Afanasjev, Internal modes of |
| 160 | +envelope solitons, Physica D 116 (1) (1998) 121–142, |
| 161 | +<a href="https://doi.org/10.1016/S0167-2789(98)80010-9.">https://doi.org/10.1016/S0167-2789(98)80010-9.</a></p> |
| 162 | +<p>[K1998] Y. S. Kivshar, D. E. Pelinovsky, T. Cretegny, M. Peyrard, Internal |
| 163 | +modes of solitary waves, Phys. Rev. Lett. 80 (1998) 5032, |
| 164 | +<a href="https://doi.org/10.1103/PhysRevLett.80.5032.">https://doi.org/10.1103/PhysRevLett.80.5032.</a></p> |
| 165 | +<h2 id="parameters">Parameters</h2> |
| 166 | +<dl> |
| 167 | +<dt><strong><code>xi</code></strong> : <code>array_like</code></dt> |
| 168 | +<dd>Disrete transverse coordinates.</dd> |
| 169 | +<dt><strong><code>U</code></strong> : <code>array_like</code></dt> |
| 170 | +<dd>Solitary wave solution.</dd> |
| 171 | +<dt><strong><code>kap</code></strong> : <code>float</code></dt> |
| 172 | +<dd>Solitary wave wavenumber.</dd> |
| 173 | +<dt><strong><code>c2</code></strong> : <code>float</code></dt> |
| 174 | +<dd>Constant coefficient of the linear differential operator part</dd> |
| 175 | +<dt><strong><code>F_fun</code></strong> : <code>function</code></dt> |
| 176 | +<dd>Nonlinear functional.</dd> |
| 177 | +<dt><strong><code>F1_fun</code></strong> : <code>function</code></dt> |
| 178 | +<dd>Derivative of the nonlinear functional.</dd> |
| 179 | +</dl></div> |
| 180 | +</dd> |
| 181 | +<dt id="SWtools_ext_LE.LE_HONSE"><code class="name flex"> |
| 182 | +<span>def <span class="ident">LE_HONSE</span></span>(<span>xi, U, kap, coeffs)</span> |
| 183 | +</code></dt> |
| 184 | +<dd> |
| 185 | +<details class="source"> |
| 186 | +<summary> |
| 187 | +<span>Expand source code</span> |
| 188 | +</summary> |
| 189 | +<pre><code class="python">def LE_HONSE(xi, U, kap, coeffs): |
| 190 | + """Linearized eigenspectrum for a HONSE. |
| 191 | + |
| 192 | + Solves the eigenvalue problem for the linear stability matrix of a GNSE |
| 193 | + with cubic nonlinear functional and linear differential operator including |
| 194 | + dispersion of orders two, three and four [T2020,M2024]. |
| 195 | + |
| 196 | + Note |
| 197 | + ---- |
| 198 | + The linear stability matrix for this model is generally non-selfadjoint and |
| 199 | + does not simply reduce to that of [P1998] (with higher orders of the linear |
| 200 | + derivatives included). |
| 201 | + |
| 202 | + References |
| 203 | + ---------- |
| 204 | + [T2020] K. K. K. Tam, T. J. Alexander, A. Blanco-Redondo, C. M. de Sterke, |
| 205 | + Generalized dispersion Kerr solitons, Phys. Rev. A 101 (2020) 043822, |
| 206 | + https://doi.org/10.1103/PhysRevA.101.043822. |
| 207 | + |
| 208 | + [M2024] O. Melchert, A. Demircan, |
| 209 | + https://doi.org/10.48550/arXiv.2504.10623. |
| 210 | + |
| 211 | + [P1998] D. E. Pelinovsky, Y. S. Kivshar, V. V. Afanasjev, Internal modes of |
| 212 | + envelope solitons, Physica D 116 (1) (1998) 121–142, |
| 213 | + https://doi.org/10.1016/S0167-2789(98)80010-9. |
| 214 | + |
| 215 | + Parameters |
| 216 | + ---------- |
| 217 | + xi : array_like |
| 218 | + Disrete transverse coordinates. |
| 219 | + U : array_like |
| 220 | + Solitary wave solution. |
| 221 | + kap : float |
| 222 | + Solitary wave wavenumber. |
| 223 | + coeffs : array_like |
| 224 | + Scaled dispersion parameters coeffs = [c0,c1,c2,c3,c4] defining the |
| 225 | + propagation constant (c_n = beta_n/n!). |
| 226 | + """ |
| 227 | + |
| 228 | + # -- COMPOSE MATRIX DETERMINING EVP FOR THE PERTURBATION MODES |
| 229 | + # ... PREPARE COEFFICIENTS FOR FINITE-DIFFERENCE MATRIX |
| 230 | + dxi = xi[1]-xi[0] |
| 231 | + c2, c3, c4 = coeffs |
| 232 | + sc2, sc3, sc4 = c2/dxi**2, c3/dxi**3, c4/dxi**4 |
| 233 | + I = np.abs(U)**2 |
| 234 | + |
| 235 | + # ... SET UP DIAGONALS |
| 236 | + D3m = ( 1j*( 1/8)*sc3 - ( 1/6)*sc4)*np.ones(xi.size-3) |
| 237 | + D2m = ( ( 1/12)*sc2 - 1j*sc3 + 2*sc4)*np.ones(xi.size-2) |
| 238 | + D1m = (-(16/12)*sc2 + 1j*(13/8)*sc3 - (13/2)*sc4)*np.ones(xi.size-1) |
| 239 | + D0 = ( (30/12)*sc2 + (28/3)*sc4)*np.ones(xi.size) |
| 240 | + D1p = (-(16/12)*sc2 - (13/8)*1j*sc3 - (13/2)*sc4)*np.ones(xi.size-1) |
| 241 | + D2p = ( ( 1/12)*sc2 + 1j*sc3 + 2*sc4)*np.ones(xi.size-2) |
| 242 | + D3p = ( -1j*( 1/8)*sc3 - ( 1/6)*sc4)*np.ones(xi.size-3) |
| 243 | + |
| 244 | + # ... SET UP CORRESPONDING SPARSE FINITE DIFFERENCE MATRICES |
| 245 | + M11 = diags([D0 + (2*np.abs(U)**2-kap), D1p, D2p, D3p, D1m, D2m, D3m], [0,-1,-2,-3,1,2,3]).toarray() |
| 246 | + M12 = diags([U*U],[0]).toarray() |
| 247 | + |
| 248 | + # ... SET UP AUXILIARY MATRIX |
| 249 | + M = np.block([ |
| 250 | + [ M11, M12], |
| 251 | + [-np.conj(M12), -np.conj(M11)] |
| 252 | + ]) |
| 253 | + |
| 254 | + # ... SOLVE EIGENVALUE PROBLEM |
| 255 | + e_, v_ = eig(M) |
| 256 | + |
| 257 | + # -- FILTER FOR EIGENVALUES WITHIN GAP OF CONTINUOUS SPECTRUM |
| 258 | + # ... DETERMINE ONSET OF CONTINUOUS-WAVE BANDS |
| 259 | + w = FTFREQ(xi.size, d=xi[1]-xi[0])*2*np.pi |
| 260 | + bw = c2*w**2 + c3*w**3 + c4*w**4 |
| 261 | + bw_max = np.max(bw) |
| 262 | + Lam_max = kap - bw_max |
| 263 | + # ... FILTER EIGENVALUES AND EIGENFUNCTIONS |
| 264 | + Lam_ = 1j*e_ |
| 265 | + Lam = Lam_[ np.abs(np.imag(Lam_))<Lam_max] |
| 266 | + v = v_[:, np.abs(np.imag(Lam_))<Lam_max] |
| 267 | + # ... SEPARATE THE MODES AND MAKE INDEXING MORE INTUITIVE |
| 268 | + f = np.asarray([v[:xi.size,n] for n in range(Lam.size)]) |
| 269 | + g = np.asarray([v[xi.size:,n] for n in range(Lam.size)]) |
| 270 | + # ... GET ORDER FOR INCREASING MAGNITUDE OF IMAGINARY PART |
| 271 | + idx_srt = np.flip(np.argsort(np.abs(np.imag(Lam)))) |
| 272 | + |
| 273 | + return Lam_max, Lam[idx_srt], f[idx_srt], g[idx_srt]</code></pre> |
| 274 | +</details> |
| 275 | +<div class="desc"><p>Linearized eigenspectrum for a HONSE.</p> |
| 276 | +<p>Solves the eigenvalue problem for the linear stability matrix of a GNSE |
| 277 | +with cubic nonlinear functional and linear differential operator including |
| 278 | +dispersion of orders two, three and four [T2020,M2024].</p> |
| 279 | +<h2 id="note">Note</h2> |
| 280 | +<p>The linear stability matrix for this model is generally non-selfadjoint and |
| 281 | +does not simply reduce to that of [P1998] (with higher orders of the linear |
| 282 | +derivatives included).</p> |
| 283 | +<h2 id="references">References</h2> |
| 284 | +<p>[T2020] K. K. K. Tam, T. J. Alexander, A. Blanco-Redondo, C. M. de Sterke, |
| 285 | +Generalized dispersion Kerr solitons, Phys. Rev. A 101 (2020) 043822, |
| 286 | +<a href="https://doi.org/10.1103/PhysRevA.101.043822.">https://doi.org/10.1103/PhysRevA.101.043822.</a></p> |
| 287 | +<p>[M2024] O. Melchert, A. Demircan, |
| 288 | +<a href="https://doi.org/10.48550/arXiv.2504.10623.">https://doi.org/10.48550/arXiv.2504.10623.</a></p> |
| 289 | +<p>[P1998] D. E. Pelinovsky, Y. S. Kivshar, V. V. Afanasjev, Internal modes of |
| 290 | +envelope solitons, Physica D 116 (1) (1998) 121–142, |
| 291 | +<a href="https://doi.org/10.1016/S0167-2789(98)80010-9.">https://doi.org/10.1016/S0167-2789(98)80010-9.</a></p> |
| 292 | +<h2 id="parameters">Parameters</h2> |
| 293 | +<dl> |
| 294 | +<dt><strong><code>xi</code></strong> : <code>array_like</code></dt> |
| 295 | +<dd>Disrete transverse coordinates.</dd> |
| 296 | +<dt><strong><code>U</code></strong> : <code>array_like</code></dt> |
| 297 | +<dd>Solitary wave solution.</dd> |
| 298 | +<dt><strong><code>kap</code></strong> : <code>float</code></dt> |
| 299 | +<dd>Solitary wave wavenumber.</dd> |
| 300 | +<dt><strong><code>coeffs</code></strong> : <code>array_like</code></dt> |
| 301 | +<dd>Scaled dispersion parameters coeffs = [c0,c1,c2,c3,c4] defining the |
| 302 | +propagation constant (c_n = beta_n/n!).</dd> |
| 303 | +</dl></div> |
| 304 | +</dd> |
| 305 | +<dt id="SWtools_ext_LE.LE_dump"><code class="name flex"> |
| 306 | +<span>def <span class="ident">LE_dump</span></span>(<span>Lam_max, Lam, f, g)</span> |
| 307 | +</code></dt> |
| 308 | +<dd> |
| 309 | +<details class="source"> |
| 310 | +<summary> |
| 311 | +<span>Expand source code</span> |
| 312 | +</summary> |
| 313 | +<pre><code class="python">def LE_dump(Lam_max, Lam, f, g): |
| 314 | + """List discrete eigenvalues. |
| 315 | + |
| 316 | + Parameters |
| 317 | + ---------- |
| 318 | + Lam_max : float |
| 319 | + Continuum edge. |
| 320 | + Lam : array_like |
| 321 | + Complex-valued eigenvalues. |
| 322 | + f, g : array_like |
| 323 | + Complex-valued eigenfunctions. |
| 324 | + """ |
| 325 | + print("# -- DISCRETE EIGENSPECTRUM (SORTED)") |
| 326 | + print("# -- CONTINUUM EDGE:", Lam_max) |
| 327 | + for n in range(Lam.size): |
| 328 | + LamR, LamI = np.real(Lam[n]), np.imag(Lam[n]) |
| 329 | + print(f"n = {n} Re[Lam_n] = {LamR:+6.5F} Im[Lam_n] = {LamI:+6.5F}")</code></pre> |
| 330 | +</details> |
| 331 | +<div class="desc"><p>List discrete eigenvalues.</p> |
| 332 | +<h2 id="parameters">Parameters</h2> |
| 333 | +<dl> |
| 334 | +<dt><strong><code>Lam_max</code></strong> : <code>float</code></dt> |
| 335 | +<dd>Continuum edge.</dd> |
| 336 | +<dt><strong><code>Lam</code></strong> : <code>array_like</code></dt> |
| 337 | +<dd>Complex-valued eigenvalues.</dd> |
| 338 | +<dt><strong><code>f</code></strong>, <strong><code>g</code></strong> : <code>array_like</code></dt> |
| 339 | +<dd>Complex-valued eigenfunctions.</dd> |
| 340 | +</dl></div> |
| 341 | +</dd> |
| 342 | +</dl> |
| 343 | +</section> |
| 344 | +<section> |
| 345 | +</section> |
| 346 | +</article> |
| 347 | +<nav id="sidebar"> |
| 348 | +<div class="toc"> |
| 349 | +<ul> |
| 350 | +<li><a href="#note">Note</a></li> |
| 351 | +</ul> |
| 352 | +</div> |
| 353 | +<ul id="index"> |
| 354 | +<li><h3><a href="#header-functions">Functions</a></h3> |
| 355 | +<ul class=""> |
| 356 | +<li><code><a title="SWtools_ext_LE.LE_GNSE" href="#SWtools_ext_LE.LE_GNSE">LE_GNSE</a></code></li> |
| 357 | +<li><code><a title="SWtools_ext_LE.LE_HONSE" href="#SWtools_ext_LE.LE_HONSE">LE_HONSE</a></code></li> |
| 358 | +<li><code><a title="SWtools_ext_LE.LE_dump" href="#SWtools_ext_LE.LE_dump">LE_dump</a></code></li> |
| 359 | +</ul> |
| 360 | +</li> |
| 361 | +</ul> |
| 362 | +</nav> |
| 363 | +</main> |
| 364 | +<footer id="footer"> |
| 365 | +<p>Generated by <a href="https://pdoc3.github.io/pdoc" title="pdoc: Python API documentation generator"><cite>pdoc</cite> 0.11.6</a>.</p> |
| 366 | +</footer> |
| 367 | +</body> |
| 368 | +</html> |
0 commit comments