|
| 1 | +"""main_fig_stability_v1.py |
| 2 | +
|
| 3 | +Module implementing a figure with the description: |
| 4 | +
|
| 5 | +Linear stability analysis for the solitary waves of a higher-order nonlinear |
| 6 | +Schrödinger equation with quartic dispersion. |
| 7 | +% |
| 8 | +(a) Solitary wave with wavenumber $\kappa$. |
| 9 | +% |
| 10 | +(b) Zero-eigenvalue modes (stars) and internal modes (diamonds). |
| 11 | +Continuous-wave spectrum is shaded gray. |
| 12 | +% |
| 13 | +(c) Small-amplitude mode $f$ of the fundamental internal mode, and, |
| 14 | +% |
| 15 | +(d) corresponding mode $g$. |
| 16 | +
|
| 17 | +.. codeauthor:: Oliver Melchert <melchert@iqo.uni-hannover.de> |
| 18 | +""" |
| 19 | +import sys |
| 20 | +import os |
| 21 | +import numpy as np |
| 22 | +import matplotlib as mpl |
| 23 | +import matplotlib.pyplot as plt |
| 24 | +from matplotlib.gridspec import GridSpec, GridSpecFromSubplotSpec |
| 25 | + |
| 26 | + |
| 27 | +def save_fig(fig_name='test', fig_format='png'): |
| 28 | + dir_name = os.path.dirname(fig_name) |
| 29 | + os.makedirs(dir_name,exist_ok=True) |
| 30 | + if fig_format == 'png': |
| 31 | + plt.savefig(fig_name+'.png', format='png', dpi=600) |
| 32 | + elif fig_format == 'pdf': |
| 33 | + plt.savefig(fig_name+'.pdf', format='pdf', dpi=600) |
| 34 | + elif fig_format == 'svg': |
| 35 | + plt.savefig(fig_name+'.svg', format='svg', dpi=600) |
| 36 | + else: |
| 37 | + plt.show() |
| 38 | + |
| 39 | + |
| 40 | +def set_style(fig_width=3.25, aspect_ratio = 0.6): |
| 41 | + |
| 42 | + fig_height = aspect_ratio*fig_width |
| 43 | + |
| 44 | + params = { |
| 45 | + 'figure.figsize': (fig_width,fig_height), |
| 46 | + 'legend.fontsize': 6, |
| 47 | + 'legend.frameon': False, |
| 48 | + 'axes.labelsize': 7, |
| 49 | + 'axes.linewidth': 1., |
| 50 | + 'axes.linewidth': 0.8, |
| 51 | + 'xtick.labelsize' :7, |
| 52 | + 'ytick.labelsize': 7, |
| 53 | + 'mathtext.fontset': 'stixsans', |
| 54 | + 'mathtext.rm': 'serif', |
| 55 | + 'mathtext.bf': 'serif:bold', |
| 56 | + 'mathtext.it': 'serif:italic', |
| 57 | + 'mathtext.sf': 'sans\\-serif', |
| 58 | + 'font.size': 7, |
| 59 | + 'font.family': 'serif', |
| 60 | + 'font.serif': "Helvetica", |
| 61 | + } |
| 62 | + mpl.rcParams.update(params) |
| 63 | + |
| 64 | + |
| 65 | +def main_figure(res, o_name = './fig_v1'): |
| 66 | + |
| 67 | + o_format = 'png' |
| 68 | + |
| 69 | + def subfig_label(ax, label): |
| 70 | + pos = ax.get_position() |
| 71 | + fig.text( |
| 72 | + pos.x0, |
| 73 | + pos.y1, |
| 74 | + label, |
| 75 | + color="white", |
| 76 | + backgroundcolor="k", |
| 77 | + bbox=dict(facecolor="k", edgecolor="none", boxstyle="square,pad=0.1"), |
| 78 | + verticalalignment="top", |
| 79 | + horizontalalignment="left", |
| 80 | + ) |
| 81 | + |
| 82 | + set_style(3.5, 0.66) |
| 83 | + fig = plt.figure() |
| 84 | + plt.subplots_adjust(left = 0.1, bottom = 0.11, right = 0.99, top = 0.98, wspace=1.3) |
| 85 | + gs00 = GridSpec(nrows = 1, ncols = 1) |
| 86 | + |
| 87 | + gsA = GridSpecFromSubplotSpec(4, 5, subplot_spec=gs00[0,0], wspace=1.5, hspace=0.2) |
| 88 | + ax0 = fig.add_subplot(gsA[:, 2]) |
| 89 | + |
| 90 | + gsB = GridSpecFromSubplotSpec(2, 1, subplot_spec=gsA[:,3:], wspace=0.075, hspace=0.05) |
| 91 | + ax1 = fig.add_subplot(gsB[0, 0]) |
| 92 | + ax2 = fig.add_subplot(gsB[1, 0]) |
| 93 | + sf1 = [ax1,ax2] |
| 94 | + |
| 95 | + gsC = GridSpecFromSubplotSpec(1, 1, subplot_spec=gsA[:,:2], wspace=0.075, hspace=0.075) |
| 96 | + ax3 = fig.add_subplot(gsC[0, 0]) |
| 97 | + |
| 98 | + |
| 99 | + # -- SUBFIGURE CONTENT ---------------------------------------------------- |
| 100 | + subfig_a(fig, ax3, res) |
| 101 | + subfig_b(fig, ax0, res) |
| 102 | + subfig_cd(fig, sf1, res) |
| 103 | + |
| 104 | + subfig_label(ax3,r"(a)") |
| 105 | + subfig_label(ax0,r"(b)") |
| 106 | + subfig_label(ax1,r"(c)") |
| 107 | + subfig_label(ax2,r"(d)") |
| 108 | + |
| 109 | + # -- GENERATE FIGURE ------------------------------------------------------ |
| 110 | + save_fig(fig_name=o_name, fig_format=o_format ) |
| 111 | + |
| 112 | + |
| 113 | +def marker_style(LamR, LamI): |
| 114 | + |
| 115 | + my_col, my_marker, my_size = 'k', 'o', 4 |
| 116 | + mfc, mew = 'k',1 |
| 117 | + |
| 118 | + if np.abs(LamR) < 0.02 and np.abs(LamI) < 0.01: |
| 119 | + my_col, my_marker, my_size = 'limegreen', '*', 6 |
| 120 | + mfc, mew = 'limegreen', 0 |
| 121 | + elif np.abs(LamR) > 0.02 and np.abs(LamI) < 0.01: |
| 122 | + my_col, my_marker, my_size = 'magenta', 'd', 4 |
| 123 | + mfc, mew = 'white', 1 |
| 124 | + elif np.abs(LamI) > 0.01: |
| 125 | + my_col, my_marker, my_size = 'C0', 'd', 4 |
| 126 | + mfc, mew = 'C0', 1 |
| 127 | + |
| 128 | + return my_col, my_marker, my_size, mfc, mew |
| 129 | + |
| 130 | + |
| 131 | +def subfig_a(fig, ax, res): |
| 132 | + |
| 133 | + t = res['xi'] |
| 134 | + U = res['U'] |
| 135 | + kap = res['kap'] |
| 136 | + |
| 137 | + def my_label(ax, label): |
| 138 | + pos = ax.get_position() |
| 139 | + fig.text( |
| 140 | + pos.x0+0.01, |
| 141 | + pos.y0+0.01, |
| 142 | + label, |
| 143 | + color="k", |
| 144 | + verticalalignment="bottom", |
| 145 | + horizontalalignment="left", |
| 146 | + ) |
| 147 | + |
| 148 | + my_yLims = lambda y: (1.2*np.min(np.real(y)),1.2*np.max(np.real(y))) |
| 149 | + |
| 150 | + ax.axhline(0, color='k', lw=0.75) |
| 151 | + ax.plot(t, np.real(U), color="C0", lw=1, label=r'${\mathrm{Re}}[U]$') |
| 152 | + ax.plot(t, np.imag(U), color="C0", dashes=[2,1], lw=1, label=r'${\mathrm{Im}}[U]$') |
| 153 | + ax.set_ylim(my_yLims(U)) |
| 154 | + ax.set_ylabel(r"Solution $U(\xi)$") |
| 155 | + ax.tick_params(axis="x", length=2.0, pad=1) |
| 156 | + ax.tick_params(axis="y", length=2.0, pad=1) |
| 157 | + ax.set_xlabel(r"Coordinate $\xi$", labelpad=1) |
| 158 | + |
| 159 | + ax.legend( |
| 160 | + ncol=1, |
| 161 | + loc='upper right', |
| 162 | + handlelength=0.8, |
| 163 | + columnspacing=1., |
| 164 | + handletextpad=0.5 |
| 165 | + ) |
| 166 | + |
| 167 | + #my_label(ax, "$\kappa = %4.3lf$"%(kap)) |
| 168 | + ax.yaxis.set_label_coords(-0.25,0.5) |
| 169 | + |
| 170 | + |
| 171 | +def subfig_b(fig, ax, res): |
| 172 | + kap = res['kap'] |
| 173 | + Lam = res['Lam'] |
| 174 | + Lam_max = res['Lam_max'] |
| 175 | + f = res['f'] |
| 176 | + g = res['g'] |
| 177 | + |
| 178 | + ax.axhline(0,color='k', lw=0.5) |
| 179 | + ax.axvline(0,color='k', lw=0.5) |
| 180 | + for i in range(Lam.size): |
| 181 | + LamR, LamI = np.real(Lam[i]), np.imag(Lam[i]) |
| 182 | + my_col, my_marker, my_size, mfc, mew = marker_style(LamR, LamI) |
| 183 | + ax.plot([LamR], [LamI], color=my_col, marker = my_marker, markersize=my_size, mfc=mfc, mew=mew) |
| 184 | + |
| 185 | + ax.axhline(Lam_max, color='k', dashes=[1,1]) |
| 186 | + ax.axhline(-Lam_max, color='k', dashes=[1,1]) |
| 187 | + |
| 188 | + ax.axhspan(Lam_max,1.5*Lam_max, color='silver') |
| 189 | + ax.axhspan(-Lam_max,-1.5*Lam_max, color='silver') |
| 190 | + |
| 191 | + y_lim = (-1.2*Lam_max, 1.2*Lam_max) |
| 192 | + ax.tick_params(axis="y", length=2.0, pad=1) |
| 193 | + ax.set_ylim(y_lim) |
| 194 | + ax.set_ylabel(r"$\rm{Im}[\Lambda]$") |
| 195 | + |
| 196 | + x_lim = (-1.5,1.5) |
| 197 | + ax.set_xlim(x_lim) |
| 198 | + ax.tick_params(axis="x", length=2.0, pad=1, top=False) |
| 199 | + ax.set_xlabel(r"$\rm{Re}[\Lambda]$", labelpad=1) |
| 200 | + |
| 201 | + ax.yaxis.set_label_coords(-.9,0.5) |
| 202 | + |
| 203 | + |
| 204 | +def subfig_cd(fig, axs, res): |
| 205 | + |
| 206 | + ax1, ax2 = axs |
| 207 | + |
| 208 | + t = res['xi'] |
| 209 | + Lam = res['Lam'] |
| 210 | + f_ = res['f'] |
| 211 | + g_ = res['g'] |
| 212 | + |
| 213 | + my_yLims = lambda y: (1.2*np.min(np.real(y)),1.4*np.max(np.real(y))) |
| 214 | + |
| 215 | + idx = np.argmin(np.where(np.abs(np.imag(Lam))>0.02, np.abs(np.imag(Lam)) , np.inf)) |
| 216 | + |
| 217 | + LamR, LamI = np.real(Lam[idx]), np.imag(Lam[idx]) |
| 218 | + f, g = f_[idx], g_[idx] |
| 219 | + |
| 220 | + my_col, my_marker, my_size, mfc, mew = marker_style(LamR, LamI) |
| 221 | + |
| 222 | + ax1.axhline(0, color='k', lw=0.75) |
| 223 | + ax1.plot(t, np.real(f), color=my_col, lw=1, label=r'${\mathrm{Re}}[f]$') |
| 224 | + ax1.plot(t, np.imag(f), color=my_col, dashes=[2,1], lw=1, label=r'${\mathrm{Im}}[f]$') |
| 225 | + ax1.set_ylim(my_yLims(f)) |
| 226 | + ax1.set_ylabel(r"Mode $f$") |
| 227 | + #ax1.set_ylabel(r"Mode $f$ (${\rm{Im}}[\Lambda] = %4.3lf$)"%(LamI)) |
| 228 | + ax1.tick_params(axis="x", length=2.0, pad=1, labelbottom=False) |
| 229 | + ax1.tick_params(axis="y", length=2.0, pad=1) |
| 230 | + |
| 231 | + ax1.legend( |
| 232 | + ncol=2, |
| 233 | + handlelength=0.8, |
| 234 | + columnspacing=0.75, |
| 235 | + handletextpad=0.5, |
| 236 | + loc = (0.15,0.85) |
| 237 | + ) |
| 238 | + |
| 239 | + ax2.axhline(0, color='k', lw=0.75) |
| 240 | + ax2.plot(t, np.real(g), color=my_col, lw=1, label=r'${\mathrm{Re}}[g]$') |
| 241 | + ax2.plot(t, np.imag(g), color=my_col, dashes=[2,1], lw=1, label=r'${\mathrm{Im}}[g]$') |
| 242 | + ax2.set_ylim(my_yLims(g)) |
| 243 | + ax2.set_ylabel(r"Mode $g$") |
| 244 | + #ax2.set_ylabel(r"Mode $g$ (${\rm{Im}}[\Lambda] = %4.3lf$)"%(LamI)) |
| 245 | + ax2.tick_params(axis="x", length=2.0, pad=1) |
| 246 | + ax2.tick_params(axis="y", length=2.0, pad=1) |
| 247 | + ax2.set_xlabel(r"Coordinate $\xi$", labelpad=1) |
| 248 | + |
| 249 | + ax2.legend( |
| 250 | + ncol=2, |
| 251 | + handlelength=0.8, |
| 252 | + columnspacing=0.75, |
| 253 | + handletextpad=0.5, |
| 254 | + loc = (0.15,0.85) |
| 255 | + ) |
| 256 | + |
| 257 | + ax1.yaxis.set_label_coords(-0.3,0.5) |
| 258 | + ax2.yaxis.set_label_coords(-0.3,0.5) |
| 259 | + |
| 260 | + |
| 261 | +if __name__=="__main__": |
| 262 | + res = np.load('../res_LE_HONSE.npz') |
| 263 | + main_figure(res, o_name = './fig_HONSE_stability') |
0 commit comments