Skip to content

Commit aabbf96

Browse files
authored
Add stable-diffusion-v1-5 example (#34)
## Type of Change example ## Description Add stable-diffusion-v1-5 example --------- Signed-off-by: Mengni Wang <mengni.wang@intel.com> Signed-off-by: Wang, Mengni <mengni.wang@intel.com>
1 parent 05bb58a commit aabbf96

File tree

9 files changed

+451
-1
lines changed

9 files changed

+451
-1
lines changed

examples/.config/model_params_onnxrt.json

Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -153,6 +153,13 @@
153153
"input_model": "/tf_dataset2/models/onnx/resnet50-v1-12/resnet50-v1-12.onnx",
154154
"main_script": "main.py",
155155
"batch_size": 1
156+
},
157+
"sd-v1-5-sq": {
158+
"model_src_dir": "nlp/huggingface_model/text_to_image/stable_diffusion_v1_5/quantization/ptq_static",
159+
"dataset_location": "",
160+
"input_model": "/tf_dataset2/models/onnx/sd_v1_5",
161+
"main_script": "main.py",
162+
"batch_size": 1
156163
}
157164
}
158165
}
Lines changed: 47 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,47 @@
1+
Step-by-Step
2+
============
3+
4+
This example shows how to quantize the unet model of [stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) with SmoothQuant and generate images with the quantized unet.
5+
6+
# Prerequisite
7+
8+
## 1. Environment
9+
```shell
10+
pip install -r requirements.txt
11+
```
12+
> Note: Validated ONNX Runtime [Version](/docs/installation_guide.md#validated-software-environment).
13+
14+
## 2. Prepare Model
15+
16+
17+
```bash
18+
git clone https://github.com/huggingface/diffusers.git
19+
cd diffusers/scripts
20+
python convert_stable_diffusion_checkpoint_to_onnx.py --model_path runwayml/stable-diffusion-v1-5 --output_path stable-diffusion
21+
```
22+
23+
# Run
24+
25+
## 1. Quantization
26+
27+
```bash
28+
bash run_quant.sh --input_model=/path/to/stable-diffusion \ # folder path of stable-diffusion
29+
--output_model=/path/to/save/unet_model \ # model path as *.onnx
30+
--alpha=0.7 # optional
31+
```
32+
33+
## 2. Benchmark
34+
35+
```bash
36+
bash run_benchmark.sh --input_model=/path/to/stable-diffusion \ # folder path of stable-diffusion
37+
--quantized_unet_path=/path/to/quantized/unet.onnx \ # optional, run fp32 model if not provided
38+
--prompt="a photo of an astronaut riding a horse on mars" \ # optional
39+
--image_path=image.png # optional
40+
```
41+
42+
Benchmark will print the throughput data and save the generated image.
43+
Our test results with default parameters is (fp32 vs int8):
44+
<p float="left">
45+
<img src="./imgs/fp32.png" width = "300" height = "300" alt="fp32" align=center />
46+
<img src="./imgs/int8.png" width = "300" height = "300" alt="int8" align=center />
47+
</p>
414 KB
Loading
420 KB
Loading
Lines changed: 263 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,263 @@
1+
# Licensed to the Apache Software Foundation (ASF) under one
2+
# or more contributor license agreements. See the NOTICE file
3+
# distributed with this work for additional information
4+
# regarding copyright ownership. The ASF licenses this file
5+
# to you under the Apache License, Version 2.0 (the
6+
# "License"); you may not use this file except in compliance
7+
# with the License. You may obtain a copy of the License at
8+
#
9+
# http://www.apache.org/licenses/LICENSE-2.0
10+
#
11+
# Unless required by applicable law or agreed to in writing,
12+
# software distributed under the License is distributed on an
13+
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14+
# KIND, either express or implied. See the License for the
15+
# specific language governing permissions and limitations
16+
# under the License.
17+
# pylint:disable=redefined-outer-name,logging-format-interpolation
18+
import argparse
19+
import inspect
20+
import logging
21+
import os
22+
import time
23+
from typing import List
24+
25+
import numpy as np
26+
import onnx
27+
import onnxruntime as ort
28+
import torch
29+
from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline
30+
31+
from onnx_neural_compressor import data_reader
32+
from onnx_neural_compressor.quantization import QuantType, config, quantize
33+
34+
logging.basicConfig(
35+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.WARN
36+
)
37+
38+
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
39+
parser.add_argument(
40+
"--model_path",
41+
type=str,
42+
help="Folder path of ONNX Stable-diffusion model, it contains model_index.json and sub-model folders.",
43+
)
44+
parser.add_argument("--quantized_unet_path", type=str, default=None, help="Path of the quantized unet model.")
45+
parser.add_argument("--benchmark", action="store_true", default=False)
46+
parser.add_argument("--tune", action="store_true", default=False, help="whether quantize the model")
47+
parser.add_argument("--output_model", type=str, default=None, help="output model path")
48+
parser.add_argument("--image_path", type=str, default="image.png", help="generated image path")
49+
parser.add_argument(
50+
"--batch_size",
51+
default=1,
52+
type=int,
53+
)
54+
parser.add_argument("--prompt", type=str, default="a photo of an astronaut riding a horse on mars")
55+
parser.add_argument("--alpha", type=float, default=0.7)
56+
parser.add_argument("--seed", type=int, default=1234, help="random seed for generation")
57+
parser.add_argument("--provider", type=str, default="CPUExecutionProvider")
58+
args = parser.parse_args()
59+
60+
ORT_TO_NP_TYPE = {
61+
"tensor(bool)": np.bool_,
62+
"tensor(int8)": np.int8,
63+
"tensor(uint8)": np.uint8,
64+
"tensor(int16)": np.int16,
65+
"tensor(uint16)": np.uint16,
66+
"tensor(int32)": np.int32,
67+
"tensor(uint32)": np.uint32,
68+
"tensor(int64)": np.int64,
69+
"tensor(uint64)": np.uint64,
70+
"tensor(float16)": np.float16,
71+
"tensor(float)": np.float32,
72+
"tensor(double)": np.float64,
73+
}
74+
75+
np.random.seed(args.seed)
76+
77+
78+
def benchmark(model):
79+
generator = None if args.seed is None else np.random.RandomState(args.seed)
80+
81+
pipe = OnnxStableDiffusionPipeline.from_pretrained(args.model_path, provider=args.provider)
82+
if args.quantized_unet_path is not None:
83+
unet = OnnxRuntimeModel(model=ort.InferenceSession(args.quantized_unet_path, providers=[args.provider]))
84+
pipe.unet = unet
85+
86+
image = None
87+
88+
tic = time.time()
89+
image = pipe(prompt=args.prompt, generator=generator).images[0]
90+
toc = time.time()
91+
92+
if image is not None:
93+
image.save(args.image_path)
94+
print("Generated image is saved as " + args.image_path)
95+
96+
print("\n", "-" * 10, "Summary:", "-" * 10)
97+
throughput = 1 / (toc - tic)
98+
print("Throughput: {} samples/s".format(throughput))
99+
100+
101+
class DataReader(data_reader.CalibrationDataReader):
102+
103+
def __init__(self, model_path, batch_size=1):
104+
self.encoded_list = []
105+
self.batch_size = batch_size
106+
107+
model = onnx.load(os.path.join(model_path, "unet/model.onnx"), load_external_data=False)
108+
inputs_names = [input.name for input in model.graph.input]
109+
110+
generator = np.random
111+
pipe = OnnxStableDiffusionPipeline.from_pretrained(model_path, provider="CPUExecutionProvider")
112+
prompt = "A cat holding a sign that says hello world"
113+
self.batch_size = batch_size
114+
guidance_scale = 7.5
115+
do_classifier_free_guidance = guidance_scale > 1.0
116+
num_images_per_prompt = 1
117+
negative_prompt_embeds = None
118+
negative_prompt = None
119+
callback = None
120+
eta = 0.0
121+
latents = None
122+
prompt_embeds = None
123+
if prompt_embeds is None:
124+
# get prompt text embeddings
125+
text_inputs = pipe.tokenizer(
126+
prompt,
127+
padding="max_length",
128+
max_length=pipe.tokenizer.model_max_length,
129+
truncation=True,
130+
return_tensors="np",
131+
)
132+
text_input_ids = text_inputs.input_ids
133+
prompt_embeds = pipe.text_encoder(input_ids=text_input_ids.astype(np.int32))[0]
134+
135+
prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0)
136+
137+
# get unconditional embeddings for classifier free guidance
138+
if do_classifier_free_guidance and negative_prompt_embeds is None:
139+
uncond_tokens: List[str]
140+
if negative_prompt is None:
141+
uncond_tokens = [""] * batch_size
142+
elif type(prompt) is not type(negative_prompt):
143+
raise TypeError(
144+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
145+
f" {type(prompt)}."
146+
)
147+
elif isinstance(negative_prompt, str):
148+
uncond_tokens = [negative_prompt] * batch_size
149+
elif batch_size != len(negative_prompt):
150+
raise ValueError(
151+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
152+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
153+
" the batch size of `prompt`."
154+
)
155+
else:
156+
uncond_tokens = negative_prompt
157+
158+
max_length = prompt_embeds.shape[1]
159+
uncond_input = pipe.tokenizer(
160+
uncond_tokens,
161+
padding="max_length",
162+
max_length=max_length,
163+
truncation=True,
164+
return_tensors="np",
165+
)
166+
negative_prompt_embeds = pipe.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0]
167+
168+
if do_classifier_free_guidance:
169+
negative_prompt_embeds = np.repeat(negative_prompt_embeds, num_images_per_prompt, axis=0)
170+
171+
# For classifier free guidance, we need to do two forward passes.
172+
# Here we concatenate the unconditional and text embeddings into a single batch
173+
# to avoid doing two forward passes
174+
prompt_embeds = np.concatenate([negative_prompt_embeds, prompt_embeds])
175+
176+
# get the initial random noise unless the user supplied it
177+
latents_dtype = prompt_embeds.dtype
178+
latents_shape = (batch_size * num_images_per_prompt, 4, 512 // 8, 512 // 8)
179+
if latents is None:
180+
latents = generator.randn(*latents_shape).astype(latents_dtype)
181+
elif latents.shape != latents_shape:
182+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
183+
184+
# set timesteps
185+
pipe.scheduler.set_timesteps(50)
186+
187+
latents = latents * np.float64(pipe.scheduler.init_noise_sigma)
188+
189+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
190+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
191+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
192+
# and should be between [0, 1]
193+
accepts_eta = "eta" in set(inspect.signature(pipe.scheduler.step).parameters.keys())
194+
extra_step_kwargs = {}
195+
if accepts_eta:
196+
extra_step_kwargs["eta"] = eta
197+
198+
timestep_dtype = next(
199+
(input.type for input in pipe.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)"
200+
)
201+
timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype]
202+
for i, t in enumerate(pipe.scheduler.timesteps):
203+
# expand the latents if we are doing classifier free guidance
204+
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
205+
latent_model_input = pipe.scheduler.scale_model_input(torch.from_numpy(latent_model_input), t)
206+
latent_model_input = latent_model_input.cpu().numpy()
207+
208+
# predict the noise residual
209+
timestep = np.array([t], dtype=timestep_dtype)
210+
ort_input = {}
211+
for name, inp in zip(inputs_names, [latent_model_input, timestep, prompt_embeds]):
212+
ort_input[name] = inp
213+
self.encoded_list.append(ort_input)
214+
noise_pred = pipe.unet(sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds)
215+
noise_pred = noise_pred[0]
216+
217+
# perform guidance
218+
if do_classifier_free_guidance:
219+
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2)
220+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
221+
222+
# compute the previous noisy sample x_t -> x_t-1
223+
scheduler_output = pipe.scheduler.step(
224+
torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs
225+
)
226+
latents = scheduler_output.prev_sample.numpy()
227+
228+
# call the callback, if provided
229+
if callback is not None and i % 1 == 0:
230+
step_idx = i // getattr(pipe.scheduler, "order", 1)
231+
callback(step_idx, t, latents)
232+
233+
self.iter_next = iter(self.encoded_list)
234+
235+
def get_next(self):
236+
return next(self.iter_next, None)
237+
238+
def rewind(self):
239+
self.iter_next = iter(self.encoded_list)
240+
241+
242+
if __name__ == "__main__":
243+
if args.benchmark:
244+
benchmark(args.model_path)
245+
246+
if args.tune:
247+
data_reader = DataReader(args.model_path)
248+
cfg = config.StaticQuantConfig(
249+
data_reader,
250+
weight_type=QuantType.QInt8,
251+
activation_type=QuantType.QUInt8,
252+
op_types_to_quantize=["MatMul", "Gemm"],
253+
per_channel=True,
254+
extra_options={
255+
"SmoothQuant": True,
256+
"SmoothQuantAlpha": args.alpha,
257+
"WeightSymmetric": True,
258+
"ActivationSymmetric": False,
259+
"OpTypesToExcludeOutputQuantization": ["MatMul", "Gemm"],
260+
},
261+
)
262+
input_path = os.path.join(args.model_path, "unet/model.onnx")
263+
quantize(input_path, args.output_model, cfg, optimization_level=ort.GraphOptimizationLevel.ORT_ENABLE_EXTENDED)
Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,7 @@
1+
torch
2+
diffusers
3+
onnx
4+
onnxruntime
5+
onnxruntime-extensions
6+
onnx_neural_compressor
7+
transformers==4.42.0 # restricted by model export

0 commit comments

Comments
 (0)