-
Notifications
You must be signed in to change notification settings - Fork 9
Add stable-diffusion-v1-5 example #34
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Changes from 9 commits
Commits
Show all changes
11 commits
Select commit
Hold shift + click to select a range
0c92a1a
add SD15 example
mengniwang95 a2d64e7
Update README.md
mengniwang95 32ff942
Update README.md
mengniwang95 2e45599
Update README.md
mengniwang95 206bf96
fix CI
mengniwang95 77db4f3
Update run_benchmark.sh
mengniwang95 dab9c62
Update model_params_onnxrt.json
mengniwang95 68a0614
Update requirements.txt
mengniwang95 1e853d4
Update run_quant.sh
mengniwang95 d64ca1c
update
mengniwang95 0d93cd2
fix CI
mengniwang95 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
47 changes: 47 additions & 0 deletions
47
...ace_model/text_to_image/stable_diffusion_v1_5/quantization/ptq_static/README.md
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,47 @@ | ||
| Step-by-Step | ||
| ============ | ||
|
|
||
| This example shows how to quantize the unet model of [stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) with SmoothQuant and generate images with the quantized unet. | ||
|
|
||
| # Prerequisite | ||
|
|
||
| ## 1. Environment | ||
| ```shell | ||
| pip install -r requirements.txt | ||
| ``` | ||
| > Note: Validated ONNX Runtime [Version](/docs/installation_guide.md#validated-software-environment). | ||
|
|
||
| ## 2. Prepare Model | ||
|
|
||
|
|
||
| ```bash | ||
| git clone https://github.com/huggingface/diffusers.git | ||
| cd diffusers/scripts | ||
| python convert_stable_diffusion_checkpoint_to_onnx.py --model_path runwayml/stable-diffusion-v1-5 --output_path stable-diffusion | ||
| ``` | ||
|
|
||
| # Run | ||
|
|
||
| ## 1. Quantization | ||
|
|
||
| ```bash | ||
| bash run_quant.sh --input_model=/path/to/stable-diffusion \ # folder path of stable-diffusion | ||
| --output_model=/path/to/save/unet_model \ # model path as *.onnx | ||
| --alpha=0.7 # optional | ||
| ``` | ||
|
|
||
| ## 2. Benchmark | ||
|
|
||
| ```bash | ||
| bash run_benchmark.sh --input_model=/path/to/stable-diffusion \ # folder path of stable-diffusion | ||
| --quantized_unet_path=/path/to/quantized/unet \ # optional, run fp32 model if not provided | ||
| --prompt="a photo of an astronaut riding a horse on mars" \ # optional | ||
| --image_path=image.png # optional | ||
| ``` | ||
|
|
||
| Benchmark will print the throughput data and save the generated image. | ||
| Our test results with default parameters is (fp32 vs int8): | ||
| <p float="left"> | ||
| <img src="./imgs/fp32.png" width = "300" height = "300" alt="fp32" align=center /> | ||
| <img src="./imgs/int8.png" width = "300" height = "300" alt="int8" align=center /> | ||
| </p> |
Binary file added
BIN
+414 KB
...model/text_to_image/stable_diffusion_v1_5/quantization/ptq_static/imgs/fp32.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added
BIN
+413 KB
...model/text_to_image/stable_diffusion_v1_5/quantization/ptq_static/imgs/int8.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
261 changes: 261 additions & 0 deletions
261
...nlp/huggingface_model/text_to_image/stable_diffusion_v1_5/quantization/ptq_static/main.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,261 @@ | ||
| # Licensed to the Apache Software Foundation (ASF) under one | ||
| # or more contributor license agreements. See the NOTICE file | ||
| # distributed with this work for additional information | ||
| # regarding copyright ownership. The ASF licenses this file | ||
| # to you under the Apache License, Version 2.0 (the | ||
| # "License"); you may not use this file except in compliance | ||
| # with the License. You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, | ||
| # software distributed under the License is distributed on an | ||
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
| # KIND, either express or implied. See the License for the | ||
| # specific language governing permissions and limitations | ||
| # under the License. | ||
| # pylint:disable=redefined-outer-name,logging-format-interpolation | ||
| import argparse | ||
| import inspect | ||
| import logging | ||
| import os | ||
| import time | ||
| from typing import List | ||
|
|
||
| import numpy as np | ||
| import onnx | ||
| import onnxruntime as ort | ||
| import torch | ||
| from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline | ||
|
|
||
| from onnx_neural_compressor import data_reader | ||
| from onnx_neural_compressor.quantization import QuantType, config, quantize | ||
|
|
||
| logging.basicConfig( | ||
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.WARN | ||
| ) | ||
|
|
||
| parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||
| parser.add_argument( | ||
| "--model_path", | ||
| type=str, | ||
| help="Folder path of ONNX Stable-diffusion model, it contains model_index.json and sub-model folders.", | ||
| ) | ||
| parser.add_argument("--quantized_unet_path", type=str, default=None, help="Path of the quantized unet model.") | ||
| parser.add_argument("--benchmark", action="store_true", default=False) | ||
| parser.add_argument("--tune", action="store_true", default=False, help="whether quantize the model") | ||
| parser.add_argument("--output_model", type=str, default=None, help="output model path") | ||
| parser.add_argument("--image_path", type=str, default="imgae.png", help="generated image path") | ||
| parser.add_argument( | ||
| "--batch_size", | ||
| default=1, | ||
| type=int, | ||
| ) | ||
| parser.add_argument("--prompt", type=str, default="a photo of an astronaut riding a horse on mars") | ||
| parser.add_argument("--alpha", type=float, default=0.7) | ||
| parser.add_argument("--seed", type=int, default=1234, help="random seed for generation") | ||
| parser.add_argument("--provider", type=str, default="CPUExecutionProvider") | ||
| args = parser.parse_args() | ||
|
|
||
| ORT_TO_NP_TYPE = { | ||
| "tensor(bool)": np.bool_, | ||
| "tensor(int8)": np.int8, | ||
| "tensor(uint8)": np.uint8, | ||
| "tensor(int16)": np.int16, | ||
| "tensor(uint16)": np.uint16, | ||
| "tensor(int32)": np.int32, | ||
| "tensor(uint32)": np.uint32, | ||
| "tensor(int64)": np.int64, | ||
| "tensor(uint64)": np.uint64, | ||
| "tensor(float16)": np.float16, | ||
| "tensor(float)": np.float32, | ||
| "tensor(double)": np.float64, | ||
| } | ||
|
|
||
|
|
||
| def benchmark(model): | ||
| generator = None if args.seed is None else np.random.RandomState(args.seed) | ||
|
|
||
| pipe = OnnxStableDiffusionPipeline.from_pretrained(args.model_path, provider=args.provider) | ||
| if args.quantized_unet_path is not None: | ||
| unet = OnnxRuntimeModel(model=ort.InferenceSession(args.quantized_unet_path, providers=[args.provider])) | ||
| pipe.unet = unet | ||
|
|
||
| image = None | ||
|
|
||
| tic = time.time() | ||
| image = pipe(prompt=args.prompt, generator=generator).images[0] | ||
| toc = time.time() | ||
|
|
||
| if image is not None: | ||
| image.save(args.image_path) | ||
| print("Generated image is saved as " + args.image_path) | ||
|
|
||
| print("\n", "-" * 10, "Summary:", "-" * 10) | ||
| throughput = 1 / (toc - tic) | ||
| print("Throughput: {} samples/s".format(throughput)) | ||
|
|
||
|
|
||
| class DataReader(data_reader.CalibrationDataReader): | ||
|
|
||
| def __init__(self, model_path, batch_size=1): | ||
| self.encoded_list = [] | ||
| self.batch_size = batch_size | ||
|
|
||
| model = onnx.load(os.path.join(model_path, "unet/model.onnx"), load_external_data=False) | ||
| inputs_names = [input.name for input in model.graph.input] | ||
|
|
||
| generator = np.random | ||
| pipe = OnnxStableDiffusionPipeline.from_pretrained(model_path, provider="CPUExecutionProvider") | ||
| prompt = "A cat holding a sign that says hello world" | ||
| self.batch_size = batch_size | ||
| guidance_scale = 7.5 | ||
| do_classifier_free_guidance = guidance_scale > 1.0 | ||
| num_images_per_prompt = 1 | ||
| negative_prompt_embeds = None | ||
| negative_prompt = None | ||
| callback = None | ||
| eta = 0.0 | ||
| latents = None | ||
| prompt_embeds = None | ||
| if prompt_embeds is None: | ||
| # get prompt text embeddings | ||
| text_inputs = pipe.tokenizer( | ||
| prompt, | ||
| padding="max_length", | ||
| max_length=pipe.tokenizer.model_max_length, | ||
| truncation=True, | ||
| return_tensors="np", | ||
| ) | ||
| text_input_ids = text_inputs.input_ids | ||
| prompt_embeds = pipe.text_encoder(input_ids=text_input_ids.astype(np.int32))[0] | ||
|
|
||
| prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0) | ||
|
|
||
| # get unconditional embeddings for classifier free guidance | ||
| if do_classifier_free_guidance and negative_prompt_embeds is None: | ||
| uncond_tokens: List[str] | ||
| if negative_prompt is None: | ||
| uncond_tokens = [""] * batch_size | ||
| elif type(prompt) is not type(negative_prompt): | ||
| raise TypeError( | ||
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | ||
| f" {type(prompt)}." | ||
| ) | ||
| elif isinstance(negative_prompt, str): | ||
| uncond_tokens = [negative_prompt] * batch_size | ||
| elif batch_size != len(negative_prompt): | ||
| raise ValueError( | ||
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | ||
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | ||
| " the batch size of `prompt`." | ||
| ) | ||
| else: | ||
| uncond_tokens = negative_prompt | ||
|
|
||
| max_length = prompt_embeds.shape[1] | ||
| uncond_input = pipe.tokenizer( | ||
| uncond_tokens, | ||
| padding="max_length", | ||
| max_length=max_length, | ||
| truncation=True, | ||
| return_tensors="np", | ||
| ) | ||
| negative_prompt_embeds = pipe.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0] | ||
|
|
||
| if do_classifier_free_guidance: | ||
| negative_prompt_embeds = np.repeat(negative_prompt_embeds, num_images_per_prompt, axis=0) | ||
|
|
||
| # For classifier free guidance, we need to do two forward passes. | ||
| # Here we concatenate the unconditional and text embeddings into a single batch | ||
| # to avoid doing two forward passes | ||
| prompt_embeds = np.concatenate([negative_prompt_embeds, prompt_embeds]) | ||
|
|
||
| # get the initial random noise unless the user supplied it | ||
| latents_dtype = prompt_embeds.dtype | ||
| latents_shape = (batch_size * num_images_per_prompt, 4, 512 // 8, 512 // 8) | ||
| if latents is None: | ||
| latents = generator.randn(*latents_shape).astype(latents_dtype) | ||
| elif latents.shape != latents_shape: | ||
| raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") | ||
|
|
||
| # set timesteps | ||
| pipe.scheduler.set_timesteps(50) | ||
|
|
||
| latents = latents * np.float64(pipe.scheduler.init_noise_sigma) | ||
|
|
||
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | ||
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | ||
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | ||
| # and should be between [0, 1] | ||
| accepts_eta = "eta" in set(inspect.signature(pipe.scheduler.step).parameters.keys()) | ||
| extra_step_kwargs = {} | ||
| if accepts_eta: | ||
| extra_step_kwargs["eta"] = eta | ||
|
|
||
| timestep_dtype = next( | ||
| (input.type for input in pipe.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)" | ||
| ) | ||
| timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype] | ||
| for i, t in enumerate(pipe.scheduler.timesteps): | ||
| # expand the latents if we are doing classifier free guidance | ||
| latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents | ||
| latent_model_input = pipe.scheduler.scale_model_input(torch.from_numpy(latent_model_input), t) | ||
| latent_model_input = latent_model_input.cpu().numpy() | ||
|
|
||
| # predict the noise residual | ||
| timestep = np.array([t], dtype=timestep_dtype) | ||
| ort_input = {} | ||
| for name, inp in zip(inputs_names, [latent_model_input, timestep, prompt_embeds]): | ||
| ort_input[name] = inp | ||
| self.encoded_list.append(ort_input) | ||
| noise_pred = pipe.unet(sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds) | ||
| noise_pred = noise_pred[0] | ||
|
|
||
| # perform guidance | ||
| if do_classifier_free_guidance: | ||
| noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2) | ||
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | ||
|
|
||
| # compute the previous noisy sample x_t -> x_t-1 | ||
| scheduler_output = pipe.scheduler.step( | ||
| torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs | ||
| ) | ||
| latents = scheduler_output.prev_sample.numpy() | ||
|
|
||
| # call the callback, if provided | ||
| if callback is not None and i % 1 == 0: | ||
| step_idx = i // getattr(pipe.scheduler, "order", 1) | ||
| callback(step_idx, t, latents) | ||
|
|
||
| self.iter_next = iter(self.encoded_list) | ||
|
|
||
| def get_next(self): | ||
| return next(self.iter_next, None) | ||
|
|
||
| def rewind(self): | ||
| self.iter_next = iter(self.encoded_list) | ||
|
|
||
|
|
||
| if __name__ == "__main__": | ||
| if args.benchmark: | ||
| benchmark(args.model_path) | ||
|
|
||
| if args.tune: | ||
| data_reader = DataReader(args.model_path) | ||
| cfg = config.StaticQuantConfig( | ||
| data_reader, | ||
| weight_type=QuantType.QInt8, | ||
| activation_type=QuantType.QUInt8, | ||
| op_types_to_quantize=["MatMul", "Gemm"], | ||
| per_channel=True, | ||
| extra_options={ | ||
| "SmoothQuant": True, | ||
| "SmoothQuantAlpha": args.alpha, | ||
| "WeightSymmetric": True, | ||
| "ActivationSymmetric": False, | ||
| "OpTypesToExcludeOutputQuantization": ["MatMul", "Gemm"], | ||
| }, | ||
| ) | ||
| input_path = os.path.join(args.model_path, "unet/model.onnx") | ||
| quantize(input_path, args.output_model, cfg, optimization_level=ort.GraphOptimizationLevel.ORT_ENABLE_EXTENDED) | ||
7 changes: 7 additions & 0 deletions
7
...ngface_model/text_to_image/stable_diffusion_v1_5/quantization/ptq_static/requirements.txt
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,7 @@ | ||
| torch | ||
| diffusers | ||
| onnx | ||
| onnxruntime | ||
| onnxruntime-extensions | ||
| onnx_neural_compressor | ||
| transformers==4.42.0 # restricted by model export |
67 changes: 67 additions & 0 deletions
67
...ngface_model/text_to_image/stable_diffusion_v1_5/quantization/ptq_static/run_benchmark.sh
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,67 @@ | ||
| #!/bin/bash | ||
| set -x | ||
|
|
||
| function main { | ||
|
|
||
| init_params "$@" | ||
| run_benchmark | ||
|
|
||
| } | ||
|
|
||
| # init params | ||
| function init_params { | ||
| for var in "$@" | ||
| do | ||
| case $var in | ||
| --input_model=*) | ||
| input_model=$(echo "$var" |cut -f2 -d=) | ||
| ;; | ||
| --quantized_unet_path=*) | ||
| quantized_unet_path=$(echo "$var" |cut -f2 -d=) | ||
| ;; | ||
| --batch_size=*) | ||
| batch_size=$(echo "$var" |cut -f2 -d=) | ||
| ;; | ||
| --prompt=*) | ||
| prompt=$(echo "$var" |cut -f2 -d=) | ||
| ;; | ||
| --image_path=*) | ||
| image_path=$(echo "$var" |cut -f2 -d=) | ||
| ;; | ||
| esac | ||
| done | ||
|
|
||
| } | ||
|
|
||
| # run_benchmark | ||
| function run_benchmark { | ||
|
|
||
| # Check if the input_model ends with the filename extension ".onnx" | ||
| if [[ $input_model =~ \.onnx$ ]]; then | ||
| # If the string ends with the filename extension, get the path of the file | ||
| input_model=$(dirname "$input_model") | ||
| fi | ||
|
|
||
| extra_cmd="" | ||
|
|
||
| if [ "$quantized_unet_path" ]; then | ||
| extra_cmd=$extra_cmd"--quantized_unet_path=${quantized_unet_path} " | ||
| fi | ||
|
|
||
| if [ "$prompt" ]; then | ||
| extra_cmd=$extra_cmd"--prompt=${prompt} " | ||
| fi | ||
|
|
||
| if [ "$image_path" ]; then | ||
| extra_cmd=$extra_cmd"--image_path=${image_path} " | ||
| fi | ||
|
|
||
| if [ "$batch_size" ]; then | ||
| extra_cmd=$extra_cmd"--batch_size=${batch_size} " | ||
| fi | ||
| extra_cmd=$extra_cmd"--benchmark" | ||
| eval "python main.py --model_path=${input_model} ${extra_cmd}" | ||
| } | ||
|
|
||
| main "$@" | ||
|
|
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.