|
77 | 77 | os.environ.get("VERTEXAI_EMBEDDING_LOCAL_BATCH_SIZE", "25")
|
78 | 78 | )
|
79 | 79 |
|
| 80 | +VERTEXAI_EMBEDDING_MODEL_LOCATION = os.environ.get("VERTEXAI_EMBEDDING_MODEL_LOCATION", "europe-west1") |
| 81 | + |
| 82 | +# Dimension of the VertexAI embedding model (768 is the default) but for Gemini can be up to 3072. |
| 83 | +VERTEXAI_EMBEDDING_MODEL_DIMENSION = int( |
| 84 | + os.environ.get("VERTEXAI_EMBEDDING_MODEL_DIMENSION", "768") |
| 85 | +) |
| 86 | + |
80 | 87 | # Only used for OpenAI
|
81 | 88 | OPENAI_EMBEDDING_TIMEOUT = int(
|
82 | 89 | os.environ.get("OPENAI_EMBEDDING_TIMEOUT", API_BASED_EMBEDDING_TIMEOUT)
|
@@ -222,6 +229,26 @@ async def async_return_default_schema(*args: Any, **kwargs: Any) -> str:
|
222 | 229 | dim=768,
|
223 | 230 | index_name="danswer_chunk_text_embedding_004",
|
224 | 231 | ),
|
| 232 | + SupportedEmbeddingModel( |
| 233 | + name="google/gemini-embedding-001", |
| 234 | + dim=768, |
| 235 | + index_name="danswer_chunk_google_gemini_embedding_001", |
| 236 | + ), |
| 237 | + SupportedEmbeddingModel( |
| 238 | + name="google/gemini-embedding-001", |
| 239 | + dim=768, |
| 240 | + index_name="danswer_chunk_gemini_embedding_001", |
| 241 | + ), |
| 242 | + SupportedEmbeddingModel( |
| 243 | + name="google/text-multilingual-embedding-002", |
| 244 | + dim=768, |
| 245 | + index_name="danswer_chunk_google_multilingual_embedding_002", |
| 246 | + ), |
| 247 | + SupportedEmbeddingModel( |
| 248 | + name="google/text-multilingual-embedding-002", |
| 249 | + dim=768, |
| 250 | + index_name="danswer_chunk_multilingual_embedding_002", |
| 251 | + ), |
225 | 252 | SupportedEmbeddingModel(
|
226 | 253 | name="google/textembedding-gecko@003",
|
227 | 254 | dim=768,
|
|
0 commit comments