Skip to content

[Inference Optimization] Implement Kernel Optimization and Custom Operators #412

@ooples

Description

@ooples

Problem

MISSING: Low-level kernel optimization for critical operations, enabling hardware-specific acceleration.

Missing Implementations

Custom Kernels (HIGH):

  • Optimized matrix multiplication (GEMM)
  • Fused attention kernels
  • Depthwise separable convolution
  • Group convolution
  • Custom activation functions

SIMD/Vectorization (HIGH):

  • AVX2/AVX-512 on x86
  • NEON on ARM
  • Explicit vectorization
  • Auto-vectorization hints

GPU Optimization (HIGH):

  • CUDA kernel implementations
  • Shared memory utilization
  • Warp-level primitives
  • Tensor cores usage (Ampere+)

CPU Optimization (MEDIUM):

  • Cache-aware algorithms
  • Loop tiling
  • Prefetching
  • Parallel decomposition

Integration Points

  • Custom operator registration
  • Fallback to reference implementation
  • Platform detection
  • Performance profiling

Architecture

Success Criteria

  • 2-5x speedup on critical operations
  • Hardware-specific optimization
  • Graceful fallback
  • Benchmarks vs MKL, cuBLAS

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions