Skip to content
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions odc/stats/plugins/_registry.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@ def import_all():
# TODO: make that more automatic
modules = [
"odc.stats.plugins.lc_treelite_cultivated.py",
"odc.stats.plugins.lc_level3",
"odc.stats.plugins.lc_treelite_woody",
"odc.stats.plugins.lc_tf_urban",
"odc.stats.plugins.lc_veg_class_a1",
Expand Down
54 changes: 54 additions & 0 deletions odc/stats/plugins/lc_level3.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
"""
Land Cover Level3 classification
"""

from typing import Tuple
import xarray as xr
from ._registry import StatsPluginInterface, register

NODATA = 255


class StatsLccsLevel3(StatsPluginInterface):
NAME = "ga_ls_lccs_level3"
SHORT_NAME = NAME
VERSION = "0.0.1"
PRODUCT_FAMILY = "lccs"

@property
def measurements(self) -> Tuple[str, ...]:
_measurements = ["level3_class"]
return _measurements

def reduce(self, xx: xr.Dataset) -> xr.Dataset:

l34_dss = xx.classes_l3_l4
urban_dss = xx.urban_classes
cultivated_dss = xx.cultivated_class

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

could you either give the integer a name or comment what the number means?

cultivated_mask = l34_dss == 110
l34_cultivated_masked = xr.where(cultivated_mask, cultivated_dss, l34_dss)
Copy link
Contributor

@emmaai emmaai Sep 12, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

cultivated is masked by the veg in input already, so it's just matter of merging valid data (data != nodata). Thought the logic pretty much the same, it's better to reflect that point and avoid the confusion.


urban_mask = l34_dss == 210
l34_urban_cultivated_masked = xr.where(
urban_mask, urban_dss, l34_cultivated_masked
)

attrs = xx.attrs.copy()
attrs["nodata"] = int(NODATA)
l34_urban_cultivated_masked = l34_urban_cultivated_masked.squeeze(dim=["spec"])
dims = l34_urban_cultivated_masked.dims

data_vars = {
"level3_class": xr.DataArray(
l34_urban_cultivated_masked.data, dims=dims, attrs=attrs
)
}

coords = dict((dim, xx.coords[dim]) for dim in dims)
level3 = xr.Dataset(data_vars=data_vars, coords=coords, attrs=attrs)

return level3


register("lccs_level3", StatsLccsLevel3)
88 changes: 88 additions & 0 deletions tests/test_lc_level3.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
import numpy as np
import pandas as pd
import xarray as xr
import dask.array as da
from odc.stats.plugins.lc_level3 import StatsLccsLevel3
from pathlib import Path
import pytest
import boto3
from botocore import UNSIGNED
from botocore.config import Config
from datacube.utils.dask import start_local_dask

expected_l3_classes = [
[111, 124, 215],
[124, 112, 215],
[221, 111, 216],
[223, 255, 223],
]


@pytest.fixture(scope="module")
def image_groups():
l34 = np.array(
[
[
[110, 124, 210],
[124, 110, 210],
[221, 110, 210],
[223, 255, 223],
]
],
dtype="int",
)

urban = np.array(
[
[
[215, 215, 215],
[216, 216, 215],
[116, 215, 216],
[216, 216, 216],
]
],
dtype="int",
)

cultivated = np.array(
[
[
[111, 111, 111],
[112, 112, 111],
[111, 111, 111],
[111, 111, 112],
]
],
dtype="int",
)

tuples = [
(np.datetime64("2000-01-01T00"), np.datetime64("2000-01-01")),
]
index = pd.MultiIndex.from_tuples(tuples, names=["time", "solar_day"])
coords = {
"x": np.linspace(10, 20, l34.shape[2]),
"y": np.linspace(0, 5, l34.shape[1]),
"spec": index,
}

data_vars = {
"classes_l3_l4": xr.DataArray(
l34, dims=("spec", "y", "x"), attrs={"nodata": 255}
),
"urban_classes": xr.DataArray(
urban, dims=("spec", "y", "x"), attrs={"nodata": 255}
),
"cultivated_class": xr.DataArray(
cultivated, dims=("spec", "y", "x"), attrs={"nodata": 255}
),
}
xx = xr.Dataset(data_vars=data_vars, coords=coords)
return xx


def test_urban_class(image_groups):

lc_level3 = StatsLccsLevel3()
level3_classes = lc_level3.reduce(image_groups)
assert (level3_classes.level3_class.values == expected_l3_classes).all()
Loading