Skip to content

Commit 3202e0c

Browse files
authored
Update links (#2696)
nightly->2024 main->releases/2024/4
1 parent ad491b7 commit 3202e0c

File tree

64 files changed

+169
-169
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

64 files changed

+169
-169
lines changed

README.md

Lines changed: 20 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -15,22 +15,22 @@ OpenVINO™ Model Server (OVMS) is a high-performance system for serving mod
1515

1616
![OVMS picture](docs/ovms_high_level.png)
1717

18-
The models used by the server need to be stored locally or hosted remotely by object storage services. For more details, refer to [Preparing Model Repository](https://docs.openvino.ai/nightly/ovms_docs_models_repository.html) documentation. Model server works inside [Docker containers](https://docs.openvino.ai/nightly/ovms_docs_deploying_server.html#deploying-model-server-in-docker-container), on [Bare Metal](https://docs.openvino.ai/nightly/ovms_docs_deploying_server.html#deploying-model-server-on-baremetal-without-container), and in [Kubernetes environment](https://docs.openvino.ai/nightly/ovms_docs_deploying_server.html#deploying-model-server-in-kubernetes).
19-
Start using OpenVINO Model Server with a fast-forward serving example from the [Quickstart guide](https://docs.openvino.ai/nightly/ovms_docs_quick_start_guide.html) or explore [Model Server features](https://docs.openvino.ai/nightly/ovms_docs_features.html).
18+
The models used by the server need to be stored locally or hosted remotely by object storage services. For more details, refer to [Preparing Model Repository](https://docs.openvino.ai/2024/ovms_docs_models_repository.html) documentation. Model server works inside [Docker containers](https://docs.openvino.ai/2024/ovms_docs_deploying_server.html#deploying-model-server-in-docker-container), on [Bare Metal](https://docs.openvino.ai/2024/ovms_docs_deploying_server.html#deploying-model-server-on-baremetal-without-container), and in [Kubernetes environment](https://docs.openvino.ai/2024/ovms_docs_deploying_server.html#deploying-model-server-in-kubernetes).
19+
Start using OpenVINO Model Server with a fast-forward serving example from the [Quickstart guide](https://docs.openvino.ai/2024/ovms_docs_quick_start_guide.html) or explore [Model Server features](https://docs.openvino.ai/2024/ovms_docs_features.html).
2020

2121
Read [release notes](https://github.com/openvinotoolkit/model_server/releases) to find out what’s new.
2222

2323
### Key features:
24-
- **[NEW]** [Efficient Text Generation via OpenAI API](https://docs.openvino.ai/nightly/ovms_docs_llm_reference.html)
25-
- [Python code execution](https://docs.openvino.ai/nightly/ovms_docs_python_support_reference.html)
26-
- [gRPC streaming](https://docs.openvino.ai/nightly/ovms_docs_streaming_endpoints.html)
27-
- [MediaPipe graphs serving](https://docs.openvino.ai/nightly/ovms_docs_mediapipe.html)
28-
- Model management - including [model versioning](https://docs.openvino.ai/nightly/ovms_docs_model_version_policy.html) and [model updates in runtime](https://docs.openvino.ai/nightly/ovms_docs_online_config_changes.html)
29-
- [Dynamic model inputs](https://docs.openvino.ai/nightly/ovms_docs_shape_batch_layout.html)
30-
- [Directed Acyclic Graph Scheduler](https://docs.openvino.ai/nightly/ovms_docs_dag.html) along with [custom nodes in DAG pipelines](https://docs.openvino.ai/nightly/ovms_docs_custom_node_development.html)
31-
- [Metrics](https://docs.openvino.ai/nightly/ovms_docs_metrics.html) - metrics compatible with Prometheus standard
24+
- **[NEW]** [Efficient Text Generation via OpenAI API](https://docs.openvino.ai/2024/ovms_docs_llm_reference.html)
25+
- [Python code execution](https://docs.openvino.ai/2024/ovms_docs_python_support_reference.html)
26+
- [gRPC streaming](https://docs.openvino.ai/2024/ovms_docs_streaming_endpoints.html)
27+
- [MediaPipe graphs serving](https://docs.openvino.ai/2024/ovms_docs_mediapipe.html)
28+
- Model management - including [model versioning](https://docs.openvino.ai/2024/ovms_docs_model_version_policy.html) and [model updates in runtime](https://docs.openvino.ai/2024/ovms_docs_online_config_changes.html)
29+
- [Dynamic model inputs](https://docs.openvino.ai/2024/ovms_docs_shape_batch_layout.html)
30+
- [Directed Acyclic Graph Scheduler](https://docs.openvino.ai/2024/ovms_docs_dag.html) along with [custom nodes in DAG pipelines](https://docs.openvino.ai/2024/ovms_docs_custom_node_development.html)
31+
- [Metrics](https://docs.openvino.ai/2024/ovms_docs_metrics.html) - metrics compatible with Prometheus standard
3232
- Support for multiple frameworks, such as TensorFlow, PaddlePaddle and ONNX
33-
- Support for [AI accelerators](https://docs.openvino.ai/nightly/about-openvino/compatibility-and-support/supported-devices.html)
33+
- Support for [AI accelerators](https://docs.openvino.ai/2024/about-openvino/compatibility-and-support/supported-devices.html)
3434

3535
**Note:** OVMS has been tested on RedHat, and Ubuntu. The latest publicly released docker images are based on Ubuntu and UBI.
3636
They are stored in:
@@ -40,26 +40,26 @@ They are stored in:
4040

4141
## Run OpenVINO Model Server
4242

43-
A demonstration on how to use OpenVINO Model Server can be found in [our quick-start guide](https://docs.openvino.ai/nightly/ovms_docs_quick_start_guide.html).
43+
A demonstration on how to use OpenVINO Model Server can be found in [our quick-start guide](https://docs.openvino.ai/2024/ovms_docs_quick_start_guide.html).
4444
For more information on using Model Server in various scenarios you can check the following guides:
4545

46-
* [Model repository configuration](https://docs.openvino.ai/nightly/ovms_docs_models_repository.html)
46+
* [Model repository configuration](https://docs.openvino.ai/2024/ovms_docs_models_repository.html)
4747

48-
* [Deployment options](https://docs.openvino.ai/nightly/ovms_docs_deploying_server.html)
48+
* [Deployment options](https://docs.openvino.ai/2024/ovms_docs_deploying_server.html)
4949

50-
* [Performance tuning](https://docs.openvino.ai/nightly/ovms_docs_performance_tuning.html)
50+
* [Performance tuning](https://docs.openvino.ai/2024/ovms_docs_performance_tuning.html)
5151

52-
* [Directed Acyclic Graph Scheduler](https://docs.openvino.ai/nightly/ovms_docs_dag.html)
52+
* [Directed Acyclic Graph Scheduler](https://docs.openvino.ai/2024/ovms_docs_dag.html)
5353

54-
* [Custom nodes development](https://docs.openvino.ai/nightly/ovms_docs_custom_node_development.html)
54+
* [Custom nodes development](https://docs.openvino.ai/2024/ovms_docs_custom_node_development.html)
5555

56-
* [Serving stateful models](https://docs.openvino.ai/nightly/ovms_docs_stateful_models.html)
56+
* [Serving stateful models](https://docs.openvino.ai/2024/ovms_docs_stateful_models.html)
5757

5858
* [Deploy using a Kubernetes Helm Chart](https://github.com/openvinotoolkit/operator/tree/main/helm-charts/ovms)
5959

6060
* [Deployment using Kubernetes Operator](https://operatorhub.io/operator/ovms-operator)
6161

62-
* [Using binary input data](https://docs.openvino.ai/nightly/ovms_docs_binary_input.html)
62+
* [Using binary input data](https://docs.openvino.ai/2024/ovms_docs_binary_input.html)
6363

6464

6565

@@ -73,7 +73,7 @@ For more information on using Model Server in various scenarios you can check th
7373

7474
* [RESTful API](https://restfulapi.net/)
7575

76-
* [Benchmarking results](https://docs.openvino.ai/nightly/about-openvino/performance-benchmarks.html)
76+
* [Benchmarking results](https://docs.openvino.ai/2024/about-openvino/performance-benchmarks.html)
7777

7878
* [Speed and Scale AI Inference Operations Across Multiple Architectures](https://techdecoded.intel.io/essentials/speed-and-scale-ai-inference-operations-across-multiple-architectures/?elq_cid=3646480_ts1607680426276&erpm_id=6470692_ts1607680426276) - webinar recording
7979

client/go/kserve-api/Dockerfile

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@ RUN go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.34
2626
RUN go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@v1.4.0
2727

2828
# Compile API
29-
RUN wget https://raw.githubusercontent.com/openvinotoolkit/model_server/main/src/kfserving_api/grpc_predict_v2.proto
29+
RUN wget https://raw.githubusercontent.com/openvinotoolkit/model_server/releases/2024/4/src/kfserving_api/grpc_predict_v2.proto
3030
RUN echo 'option go_package = "./grpc-client";' >> grpc_predict_v2.proto
3131
RUN protoc --go_out="./" --go-grpc_out="./" ./grpc_predict_v2.proto
3232

client/java/kserve-api/pom.xml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -64,7 +64,7 @@
6464
</goals>
6565
<configuration>
6666
<url>
67-
https://raw.githubusercontent.com/openvinotoolkit/model_server/main/src/kfserving_api/grpc_predict_v2.proto</url>
67+
https://raw.githubusercontent.com/openvinotoolkit/model_server/releases/2024/4/src/kfserving_api/grpc_predict_v2.proto</url>
6868
<outputFileName>grpc_predict_v2.proto</outputFileName>
6969
<outputDirectory>src/main/proto</outputDirectory>
7070
</configuration>

client/python/ovmsclient/lib/README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ OVMS client library contains only the necessary dependencies, so the whole packa
66

77
As OpenVINO Model Server API is compatible with TensorFlow Serving, it's possible to use `ovmsclient` with TensorFlow Serving instances on: Predict, GetModelMetadata and GetModelStatus endpoints.
88

9-
See [API documentation](https://github.com/openvinotoolkit/model_server/blob/main/client/python/ovmsclient/lib/docs/README.md) for details on what the library provides.
9+
See [API documentation](https://github.com/openvinotoolkit/model_server/blob/releases/2024/4/client/python/ovmsclient/lib/docs/README.md) for details on what the library provides.
1010

1111
```bash
1212
git clone https://github.com/openvinotoolkit/model_server.git
@@ -136,4 +136,4 @@ results = client.predict(inputs=inputs, model_name="model")
136136
#
137137
```
138138

139-
For more details on `ovmsclient` see [API reference](https://github.com/openvinotoolkit/model_server/blob/main/client/python/ovmsclient/lib/docs/README.md)
139+
For more details on `ovmsclient` see [API reference](https://github.com/openvinotoolkit/model_server/blob/releases/2024/4/client/python/ovmsclient/lib/docs/README.md)

client/python/ovmsclient/lib/docs/pypi_overview.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ The `ovmsclient` package works both with OpenVINO&trade; Model Server and Tensor
99
The `ovmsclient` can replace `tensorflow-serving-api` package with reduced footprint and simplified interface.
1010

1111

12-
See [API reference](https://github.com/openvinotoolkit/model_server/blob/main/client/python/ovmsclient/lib/docs/README.md) for usage details.
12+
See [API reference](https://github.com/openvinotoolkit/model_server/blob/releases/2024/4/client/python/ovmsclient/lib/docs/README.md) for usage details.
1313

1414

1515
## Usage example
@@ -38,4 +38,4 @@ results = client.predict(inputs=inputs, model_name="model")
3838

3939
```
4040

41-
Learn more on `ovmsclient` [documentation site](https://github.com/openvinotoolkit/model_server/tree/main/client/python/ovmsclient/lib).
41+
Learn more on `ovmsclient` [documentation site](https://github.com/openvinotoolkit/model_server/tree/releases/2024/4/client/python/ovmsclient/lib).

demos/README.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -42,7 +42,7 @@ ovms_string_output_model_demo
4242
OpenVINO Model Server demos have been created to showcase the usage of the model server as well as demonstrate it’s capabilities.
4343
### Check Out New Generative AI Demos
4444
- [Text Generation with continuous batching](continuous_batching/README.md)
45-
- [RAG with OpenAI API endpoint and langchain](https://github.com/openvinotoolkit/model_server/blob/main/demos/continuous_batching/rag/rag_demo.ipynb)
45+
- [RAG with OpenAI API endpoint and langchain](https://github.com/openvinotoolkit/model_server/blob/releases/2024/4/demos/continuous_batching/rag/rag_demo.ipynb)
4646

4747
Check out the list below to see complete step-by-step examples of using OpenVINO Model Server with real world use cases:
4848

@@ -53,23 +53,23 @@ Check out the list below to see complete step-by-step examples of using OpenVINO
5353
|[CLIP image classification](python_demos/clip_image_classification/README.md) | Classify image according to provided labels using CLIP model embedded in a multi-node MediaPipe graph.|
5454
|[Seq2seq translation](python_demos/seq2seq_translation/README.md) | Translate text using seq2seq model via gRPC API.|
5555
|[Age gender recognition](age_gender_recognition/python/README.md) | Run prediction on a JPEG image using age gender recognition model via gRPC API.|
56-
|[Horizontal Text Detection in Real-Time](horizontal_text_detection/python/README.md) | Run prediction on camera stream using a horizontal text detection model via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [horizontal_ocr custom node](https://github.com/openvinotoolkit/model_server/tree/main/src/custom_nodes/horizontal_ocr) and [demultiplexer](../docs/demultiplexing.md). |
57-
|[Optical Character Recognition Pipeline](optical_character_recognition/python/README.md) | Run prediction on a JPEG image using a pipeline of text recognition and text detection models with a custom node for intermediate results processing via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [east_ocr custom node](https://github.com/openvinotoolkit/model_server/tree/main/src/custom_nodes/east_ocr) and [demultiplexer](../docs/demultiplexing.md). |
56+
|[Horizontal Text Detection in Real-Time](horizontal_text_detection/python/README.md) | Run prediction on camera stream using a horizontal text detection model via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [horizontal_ocr custom node](https://github.com/openvinotoolkit/model_server/tree/releases/2024/4/src/custom_nodes/horizontal_ocr) and [demultiplexer](../docs/demultiplexing.md). |
57+
|[Optical Character Recognition Pipeline](optical_character_recognition/python/README.md) | Run prediction on a JPEG image using a pipeline of text recognition and text detection models with a custom node for intermediate results processing via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [east_ocr custom node](https://github.com/openvinotoolkit/model_server/tree/releases/2024/4/src/custom_nodes/east_ocr) and [demultiplexer](../docs/demultiplexing.md). |
5858
|[Face Detection](face_detection/python/README.md)|Run prediction on a JPEG image using face detection model via gRPC API.|
5959
|[Single Face Analysis Pipeline](single_face_analysis_pipeline/python/README.md)|Run prediction on a JPEG image using a simple pipeline of age-gender recognition and emotion recognition models via gRPC API to analyze image with a single face. This demo uses [pipeline](../docs/dag_scheduler.md) |
60-
|[Multi Faces Analysis Pipeline](multi_faces_analysis_pipeline/python/README.md)|Run prediction on a JPEG image using a pipeline of age-gender recognition and emotion recognition models via gRPC API to extract multiple faces from the image and analyze all of them. This demo uses [pipeline](../docs/dag_scheduler.md) with [model_zoo_intel_object_detection custom node](https://github.com/openvinotoolkit/model_server/tree/main/src/custom_nodes/model_zoo_intel_object_detection) and [demultiplexer](../docs/demultiplexing.md) |
60+
|[Multi Faces Analysis Pipeline](multi_faces_analysis_pipeline/python/README.md)|Run prediction on a JPEG image using a pipeline of age-gender recognition and emotion recognition models via gRPC API to extract multiple faces from the image and analyze all of them. This demo uses [pipeline](../docs/dag_scheduler.md) with [model_zoo_intel_object_detection custom node](https://github.com/openvinotoolkit/model_server/tree/releases/2024/4/src/custom_nodes/model_zoo_intel_object_detection) and [demultiplexer](../docs/demultiplexing.md) |
6161
|[Model Ensemble Pipeline](model_ensemble/python/README.md)|Combine multiple image classification models into one [pipeline](../docs/dag_scheduler.md) and aggregate results to improve classification accuracy. |
6262
|[Image Classification](image_classification/python/README.md)|Run prediction on a JPEG image using image classification model via gRPC API.|
63-
|[Using ONNX Model](using_onnx_model/python/README.md)|Run prediction on a JPEG image using image classification ONNX model via gRPC API in two preprocessing variants. This demo uses [pipeline](../docs/dag_scheduler.md) with [image_transformation custom node](https://github.com/openvinotoolkit/model_server/tree/main/src/custom_nodes/image_transformation). |
63+
|[Using ONNX Model](using_onnx_model/python/README.md)|Run prediction on a JPEG image using image classification ONNX model via gRPC API in two preprocessing variants. This demo uses [pipeline](../docs/dag_scheduler.md) with [image_transformation custom node](https://github.com/openvinotoolkit/model_server/tree/releases/2024/4/src/custom_nodes/image_transformation). |
6464
|[Using TensorFlow Model](image_classification_using_tf_model/python/README.md)|Run image classification using directly imported TensorFlow model. |
6565
|[Person, Vehicle, Bike Detection](person_vehicle_bike_detection/python/README.md)|Run prediction on a video file or camera stream using person, vehicle, bike detection model via gRPC API.|
66-
|[Vehicle Analysis Pipeline](vehicle_analysis_pipeline/python/README.md)|Detect vehicles and recognize their attributes using a pipeline of vehicle detection and vehicle attributes recognition models with a custom node for intermediate results processing via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [model_zoo_intel_object_detection custom node](https://github.com/openvinotoolkit/model_server/tree/main/src/custom_nodes/model_zoo_intel_object_detection). |
66+
|[Vehicle Analysis Pipeline](vehicle_analysis_pipeline/python/README.md)|Detect vehicles and recognize their attributes using a pipeline of vehicle detection and vehicle attributes recognition models with a custom node for intermediate results processing via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [model_zoo_intel_object_detection custom node](https://github.com/openvinotoolkit/model_server/tree/releases/2024/4/src/custom_nodes/model_zoo_intel_object_detection). |
6767
|[Real Time Stream Analysis](real_time_stream_analysis/python/README.md)| Analyze RTSP video stream in real time with generic application template for custom pre and post processing routines as well as simple results visualizer for displaying predictions in the browser. |
6868
|[Classification with PaddlePaddle](classification_using_paddlepaddle_model/python/README.md)| Perform classification on an image with a PaddlePaddle model. |
6969
|[Natural Language Processing with BERT](bert_question_answering/python/README.md)|Provide a knowledge source and a query and use BERT model for question answering use case via gRPC API. This demo uses dynamic shape feature. |
7070
|[Using inputs data in string format with universal-sentence-encoder model](universal-sentence-encoder/README.md)| Handling AI model with text as the model input. |
7171
|[Benchmark App](benchmark/python/README.md)|Generate traffic and measure performance of the model served in OpenVINO Model Server.|
72-
|[Face Blur Pipeline](face_blur/python/README.md)|Detect faces and blur image using a pipeline of object detection models with a custom node for intermediate results processing via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [face_blur custom node](https://github.com/openvinotoolkit/model_server/tree/main/src/custom_nodes/face_blur). |
72+
|[Face Blur Pipeline](face_blur/python/README.md)|Detect faces and blur image using a pipeline of object detection models with a custom node for intermediate results processing via gRPC API. This demo uses [pipeline](../docs/dag_scheduler.md) with [face_blur custom node](https://github.com/openvinotoolkit/model_server/tree/releases/2024/4/src/custom_nodes/face_blur). |
7373

7474
## With C++ Client
7575
| Demo | Description |

demos/age_gender_recognition/python/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@ Install python dependencies:
3535
```bash
3636
pip3 install -r requirements.txt
3737
```
38-
Run [age_gender_recognition.py](https://github.com/openvinotoolkit/model_server/blob/main/demos/age_gender_recognition/python/age_gender_recognition.py) script to make an inference:
38+
Run [age_gender_recognition.py](https://github.com/openvinotoolkit/model_server/blob/releases/2024/4/demos/age_gender_recognition/python/age_gender_recognition.py) script to make an inference:
3939
```bash
4040
python3 age_gender_recognition.py --image_input_path age-gender-recognition-retail-0001.jpg --rest_port 8000
4141
```

0 commit comments

Comments
 (0)