This repository was archived by the owner on Jan 6, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathworkflow.py
176 lines (145 loc) · 5.99 KB
/
workflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
"""Sample of MNIST training using PyTorch.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import rflow
class LoadDataset(rflow.Interface):
def evaluate(self, resource):
from torchvision import datasets
datasets.MNIST(resource.filepath, download=True)
return self.load(resource)
def load(self, resource):
from torchvision import datasets, transforms
train_dataset = datasets.MNIST('data', download=True, train=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
(0.1307,), (0.3081,))
]))
test_dataset = datasets.MNIST('data', train=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
(0.1307,), (0.3081,))
]))
return train_dataset, test_dataset
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout2d(0.25)
self.dropout2 = nn.Dropout2d(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = x.flatten(1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
def train(model, device, train_loader, optimizer, epoch, log_interval):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
# sum up batch loss
test_loss += F.nll_loss(output, target, reduction='sum').item()
# get the index of the max log-probability
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
accuracy))
return accuracy
# Defines a node
class Train(rflow.Interface):
# The `evaluate` funtion is every node's execution entry point.
# Every argument is tracked by rflow (unless if it's specified in `non_collateral`)
# Node are executed again if the tracked argument changes after the previous run.
def evaluate(self, resource, train_dataset, test_dataset,
batch_size, test_batch_size, epochs, learning_rate=1.0, gamma=0.1,
device="cuda:0", log_interval=10):
"""Trains the Mnist model.
"""
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import StepLR
import torch.optim as optim
train_loader = DataLoader(
train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(
test_dataset, batch_size=test_batch_size, shuffle=True)
model = Net().to(device)
model.train()
optimizer = optim.Adadelta(model.parameters(), lr=learning_rate)
scheduler = StepLR(optimizer, step_size=1, gamma=gamma)
for epoch in range(1, epochs + 1):
train(model, device, train_loader,
optimizer, epoch, log_interval)
test(model, device, test_loader)
scheduler.step()
torch.save(model.cpu(), resource.filepath)
return model.to(device)
# When nodes are update, then rflow calls load instead of evaluate.
def load(self, resource, device):
"""Loads trained model
"""
return torch.load(resource.filepath).to(device)
def non_collateral(self):
"""Lists arguments that doesn't change the node's output.
"""
return ["device", "log_interval"]
class Test(rflow.Interface):
def non_collateral(self):
return ["device"]
def evaluate(self, model, test_dataset, test_batch_size, device):
device = "cuda:0"
test_loader = torch.utils.data.DataLoader(test_dataset,
batch_size=test_batch_size, shuffle=True)
accuracy = test(model.to(device), device, test_loader)
self.save_measurement({"Accuracy": accuracy})
@rflow.graph()
def mnist_train(g):
g.dataset = LoadDataset(rflow.FSResource("data"))
g.train = Train(rflow.FSResource("model.torch"))
with g.train as args:
args.train_dataset = g.dataset[0]
args.test_dataset = g.dataset[1]
args.batch_size = 64
args.test_batch_size = 1000
args.epochs = 14
args.learning_rate = 1.0
args.gamma = 0.1
args.device = "cuda:0"
g.test = Test()
with g.test as args:
args.model = g.train
args.test_dataset = g.dataset[1]
args.test_batch_size = 1000
args.device = "cuda:0"