Skip to content

UnpicklingError #1686

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
denisalkulikov opened this issue Mar 29, 2025 · 0 comments
Open

UnpicklingError #1686

denisalkulikov opened this issue Mar 29, 2025 · 0 comments

Comments

@denisalkulikov
Copy link

I'm trying to forecast sales values ​​for future periods.

Previously, everything worked fine on a laptop, but on a PC, an error occurs.
Even the test example does not work.

Python 3.13, neuralprophet 0.8.0, pytorch-lightning 1.9.5 are installed.
The full text of the output is below.

WARNING - (NP.forecaster.fit) - When Global modeling with local normalization, metrics are displayed in normalized scale.
WARNING - (py.warnings._showwarnmsg) - C:\Users\user\anaconda3\Lib\site-packages\neuralprophet\df_utils.py:1152: FutureWarning: Series.view is deprecated and will be removed in a future version. Use astype as an alternative to change the dtype.
converted_ds = pd.to_datetime(ds_col, utc=True).view(dtype=np.int64)

INFO - (NP.df_utils._infer_frequency) - Major frequency D corresponds to 99.966% of the data.
INFO - (NP.df_utils._infer_frequency) - Dataframe freq automatically defined as D
INFO - (NP.config.init_data_params) - Setting normalization to global as only one dataframe provided for training.
INFO - (NP.utils.set_auto_seasonalities) - Disabling daily seasonality. Run NeuralProphet with daily_seasonality=True to override this.
INFO - (NP.config.set_auto_batch_epoch) - Auto-set batch_size to 64
INFO - (NP.config.set_auto_batch_epoch) - Auto-set epochs to 80
WARNING - (NP.config.set_lr_finder_args) - Learning rate finder: The number of batches (47) is too small than the required number for the learning rate finder (237). The results might not be optimal.
Missing logger folder: C:\Users\user\PycharmProjects\kamtent_forecasting\lightning_logs

Finding best initial lr: 0%| | 0/237 [00:00<?, ?it/s]
�[1;31m---------------------------------------------------------------------------�[0m
�[1;31mUnpicklingError�[0m Traceback (most recent call last)
Cell �[1;32mIn[4], line 3�[0m
�[0;32m 1�[0m m �[38;5;241m=�[39m NeuralProphet()
�[0;32m 2�[0m m�[38;5;241m.�[39mset_plotting_backend(�[38;5;124m"�[39m�[38;5;124mplotly-static�[39m�[38;5;124m"�[39m) �[38;5;66;03m# show plots correctly in jupyter notebooks�[39;00m
�[1;32m----> 3�[0m metrics �[38;5;241m=�[39m m�[38;5;241m.�[39mfit(df)

File �[1;32m~\anaconda3\Lib\site-packages\neuralprophet\forecaster.py:1062�[0m, in �[0;36mNeuralProphet.fit�[1;34m(self, df, freq, validation_df, epochs, batch_size, learning_rate, early_stopping, minimal, metrics, progress, checkpointing, continue_training, num_workers)�[0m
�[0;32m 1060�[0m �[38;5;66;03m# Training�[39;00m
�[0;32m 1061�[0m �[38;5;28;01mif�[39;00m validation_df �[38;5;129;01mis�[39;00m �[38;5;28;01mNone�[39;00m:
�[1;32m-> 1062�[0m metrics_df �[38;5;241m=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39m_train(
�[0;32m 1063�[0m df,
�[0;32m 1064�[0m progress_bar_enabled�[38;5;241m=�[39m�[38;5;28mbool�[39m(progress),
�[0;32m 1065�[0m metrics_enabled�[38;5;241m=�[39m�[38;5;28mbool�[39m(�[38;5;28mself�[39m�[38;5;241m.�[39mmetrics),
�[0;32m 1066�[0m checkpointing_enabled�[38;5;241m=�[39mcheckpointing,
�[0;32m 1067�[0m continue_training�[38;5;241m=�[39mcontinue_training,
�[0;32m 1068�[0m num_workers�[38;5;241m=�[39mnum_workers,
�[0;32m 1069�[0m )
�[0;32m 1070�[0m �[38;5;28;01melse�[39;00m:
�[0;32m 1071�[0m df_val, _, _, _ �[38;5;241m=�[39m df_utils�[38;5;241m.�[39mprep_or_copy_df(validation_df)

File �[1;32m~\anaconda3\Lib\site-packages\neuralprophet\forecaster.py:2802�[0m, in �[0;36mNeuralProphet._train�[1;34m(self, df, df_val, progress_bar_enabled, metrics_enabled, checkpointing_enabled, continue_training, num_workers)�[0m
�[0;32m 2800�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mconfig_train�[38;5;241m.�[39mset_lr_finder_args(dataset_size�[38;5;241m=�[39mdataset_size, num_batches�[38;5;241m=�[39m�[38;5;28mlen�[39m(train_loader))
�[0;32m 2801�[0m �[38;5;66;03m# Find suitable learning rate�[39;00m
�[1;32m-> 2802�[0m lr_finder �[38;5;241m=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39mtrainer�[38;5;241m.�[39mtuner�[38;5;241m.�[39mlr_find(
�[0;32m 2803�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mmodel,
�[0;32m 2804�[0m train_dataloaders�[38;5;241m=�[39mtrain_loader,
�[0;32m 2805�[0m �[38;5;241m�[39m�[38;5;241m�[39m�[38;5;28mself�[39m�[38;5;241m.�[39mconfig_train�[38;5;241m.�[39mlr_finder_args,
�[0;32m 2806�[0m )
�[0;32m 2807�[0m �[38;5;28;01massert�[39;00m lr_finder �[38;5;129;01mis�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28;01mNone�[39;00m
�[0;32m 2808�[0m �[38;5;66;03m# Estimate the optimat learning rate from the loss curve�[39;00m

File �[1;32m~\anaconda3\Lib\site-packages\pytorch_lightning\tuner\tuning.py:267�[0m, in �[0;36mTuner.lr_find�[1;34m(self, model, train_dataloaders, val_dataloaders, dataloaders, datamodule, method, min_lr, max_lr, num_training, mode, early_stop_threshold, update_attr)�[0m
�[0;32m 264�[0m lr_finder_callback�[38;5;241m.�[39m_early_exit �[38;5;241m=�[39m �[38;5;28;01mTrue�[39;00m
�[0;32m 265�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mtrainer�[38;5;241m.�[39mcallbacks �[38;5;241m=�[39m [lr_finder_callback] �[38;5;241m+�[39m �[38;5;28mself�[39m�[38;5;241m.�[39mtrainer�[38;5;241m.�[39mcallbacks
�[1;32m--> 267�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mtrainer�[38;5;241m.�[39mfit(model, train_dataloaders, val_dataloaders, datamodule)
�[0;32m 269�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mtrainer�[38;5;241m.�[39mcallbacks �[38;5;241m=�[39m [cb �[38;5;28;01mfor�[39;00m cb �[38;5;129;01min�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mtrainer�[38;5;241m.�[39mcallbacks �[38;5;28;01mif�[39;00m cb �[38;5;129;01mis�[39;00m �[38;5;129;01mnot�[39;00m lr_finder_callback]
�[0;32m 271�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mtrainer�[38;5;241m.�[39mauto_lr_find �[38;5;241m=�[39m �[38;5;28;01mFalse�[39;00m

File �[1;32m~\anaconda3\Lib\site-packages\pytorch_lightning\trainer\trainer.py:608�[0m, in �[0;36mTrainer.fit�[1;34m(self, model, train_dataloaders, val_dataloaders, datamodule, ckpt_path)�[0m
�[0;32m 606�[0m model �[38;5;241m=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39m_maybe_unwrap_optimized(model)
�[0;32m 607�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mstrategy�[38;5;241m.�[39m_lightning_module �[38;5;241m=�[39m model
�[1;32m--> 608�[0m call�[38;5;241m.�[39m_call_and_handle_interrupt(
�[0;32m 609�[0m �[38;5;28mself�[39m, �[38;5;28mself�[39m�[38;5;241m.�[39m_fit_impl, model, train_dataloaders, val_dataloaders, datamodule, ckpt_path
�[0;32m 610�[0m )

File �[1;32m~\anaconda3\Lib\site-packages\pytorch_lightning\trainer\call.py:38�[0m, in �[0;36m_call_and_handle_interrupt�[1;34m(trainer, trainer_fn, args, **kwargs)�[0m
�[0;32m 36�[0m �[38;5;28;01mreturn�[39;00m trainer�[38;5;241m.�[39mstrategy�[38;5;241m.�[39mlauncher�[38;5;241m.�[39mlaunch(trainer_fn, �[38;5;241m
�[39margs, trainer�[38;5;241m=�[39mtrainer, �[38;5;241m�[39m�[38;5;241m�[39mkwargs)
�[0;32m 37�[0m �[38;5;28;01melse�[39;00m:
�[1;32m---> 38�[0m �[38;5;28;01mreturn�[39;00m trainer_fn(�[38;5;241m�[39margs, �[38;5;241m�[39m�[38;5;241m*�[39mkwargs)
�[0;32m 40�[0m �[38;5;28;01mexcept�[39;00m _TunerExitException:
�[0;32m 41�[0m trainer�[38;5;241m.�[39m_call_teardown_hook()

File �[1;32m~\anaconda3\Lib\site-packages\pytorch_lightning\trainer\trainer.py:650�[0m, in �[0;36mTrainer._fit_impl�[1;34m(self, model, train_dataloaders, val_dataloaders, datamodule, ckpt_path)�[0m
�[0;32m 643�[0m ckpt_path �[38;5;241m=�[39m ckpt_path �[38;5;129;01mor�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mresume_from_checkpoint
�[0;32m 644�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_ckpt_path �[38;5;241m=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39m_checkpoint_connector�[38;5;241m.�[39m_set_ckpt_path(
�[0;32m 645�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mstate�[38;5;241m.�[39mfn,
�[0;32m 646�[0m ckpt_path, �[38;5;66;03m# type: ignore[arg-type]�[39;00m
�[0;32m 647�[0m model_provided�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m,
�[0;32m 648�[0m model_connected�[38;5;241m=�[39m�[38;5;28mself�[39m�[38;5;241m.�[39mlightning_module �[38;5;129;01mis�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28;01mNone�[39;00m,
�[0;32m 649�[0m )
�[1;32m--> 650�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_run(model, ckpt_path�[38;5;241m=�[39m�[38;5;28mself�[39m�[38;5;241m.�[39mckpt_path)
�[0;32m 652�[0m �[38;5;28;01massert�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mstate�[38;5;241m.�[39mstopped
�[0;32m 653�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mtraining �[38;5;241m=�[39m �[38;5;28;01mFalse�[39;00m

File �[1;32m~\anaconda3\Lib\site-packages\pytorch_lightning\trainer\trainer.py:1097�[0m, in �[0;36mTrainer._run�[1;34m(self, model, ckpt_path)�[0m
�[0;32m 1095�[0m �[38;5;66;03m# hook�[39;00m
�[0;32m 1096�[0m �[38;5;28;01mif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mstate�[38;5;241m.�[39mfn �[38;5;241m==�[39m TrainerFn�[38;5;241m.�[39mFITTING:
�[1;32m-> 1097�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_call_callback_hooks(�[38;5;124m"�[39m�[38;5;124mon_fit_start�[39m�[38;5;124m"�[39m)
�[0;32m 1098�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_call_lightning_module_hook(�[38;5;124m"�[39m�[38;5;124mon_fit_start�[39m�[38;5;124m"�[39m)
�[0;32m 1100�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_log_hyperparams()

File �[1;32m~\anaconda3\Lib\site-packages\pytorch_lightning\trainer\trainer.py:1394�[0m, in �[0;36mTrainer._call_callback_hooks�[1;34m(self, hook_name, args, **kwargs)�[0m
�[0;32m 1392�[0m �[38;5;28;01mif�[39;00m �[38;5;28mcallable�[39m(fn):
�[0;32m 1393�[0m �[38;5;28;01mwith�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mprofiler�[38;5;241m.�[39mprofile(�[38;5;124mf�[39m�[38;5;124m"�[39m�[38;5;124m[Callback]�[39m�[38;5;132;01m{�[39;00mcallback�[38;5;241m.�[39mstate_key�[38;5;132;01m}�[39;00m�[38;5;124m.�[39m�[38;5;132;01m{�[39;00mhook_name�[38;5;132;01m}�[39;00m�[38;5;124m"�[39m):
�[1;32m-> 1394�[0m fn(�[38;5;28mself�[39m, �[38;5;28mself�[39m�[38;5;241m.�[39mlightning_module, �[38;5;241m
�[39margs, �[38;5;241m�[39m�[38;5;241m�[39mkwargs)
�[0;32m 1396�[0m �[38;5;28;01mif�[39;00m pl_module:
�[0;32m 1397�[0m �[38;5;66;03m# restore current_fx when nested context�[39;00m
�[0;32m 1398�[0m pl_module�[38;5;241m.�[39m_current_fx_name �[38;5;241m=�[39m prev_fx_name

File �[1;32m~\anaconda3\Lib\site-packages\pytorch_lightning\callbacks\lr_finder.py:122�[0m, in �[0;36mLearningRateFinder.on_fit_start�[1;34m(self, trainer, pl_module)�[0m
�[0;32m 121�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mon_fit_start�[39m(�[38;5;28mself�[39m, trainer: �[38;5;124m"�[39m�[38;5;124mpl.Trainer�[39m�[38;5;124m"�[39m, pl_module: �[38;5;124m"�[39m�[38;5;124mpl.LightningModule�[39m�[38;5;124m"�[39m) �[38;5;241m-�[39m�[38;5;241m>�[39m �[38;5;28;01mNone�[39;00m:
�[1;32m--> 122�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mlr_find(trainer, pl_module)

File �[1;32m~\anaconda3\Lib\site-packages\pytorch_lightning\callbacks\lr_finder.py:107�[0m, in �[0;36mLearningRateFinder.lr_find�[1;34m(self, trainer, pl_module)�[0m
�[0;32m 105�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mlr_find�[39m(�[38;5;28mself�[39m, trainer: �[38;5;124m"�[39m�[38;5;124mpl.Trainer�[39m�[38;5;124m"�[39m, pl_module: �[38;5;124m"�[39m�[38;5;124mpl.LightningModule�[39m�[38;5;124m"�[39m) �[38;5;241m-�[39m�[38;5;241m>�[39m �[38;5;28;01mNone�[39;00m:
�[0;32m 106�[0m �[38;5;28;01mwith�[39;00m isolate_rng():
�[1;32m--> 107�[0m �[38;5;28mself�[39m�[38;5;241m.�[39moptimal_lr �[38;5;241m=�[39m lr_find(
�[0;32m 108�[0m trainer,
�[0;32m 109�[0m pl_module,
�[0;32m 110�[0m min_lr�[38;5;241m=�[39m�[38;5;28mself�[39m�[38;5;241m.�[39m_min_lr,
�[0;32m 111�[0m max_lr�[38;5;241m=�[39m�[38;5;28mself�[39m�[38;5;241m.�[39m_max_lr,
�[0;32m 112�[0m num_training�[38;5;241m=�[39m�[38;5;28mself�[39m�[38;5;241m.�[39m_num_training_steps,
�[0;32m 113�[0m mode�[38;5;241m=�[39m�[38;5;28mself�[39m�[38;5;241m.�[39m_mode,
�[0;32m 114�[0m early_stop_threshold�[38;5;241m=�[39m�[38;5;28mself�[39m�[38;5;241m.�[39m_early_stop_threshold,
�[0;32m 115�[0m update_attr�[38;5;241m=�[39m�[38;5;28mself�[39m�[38;5;241m.�[39m_update_attr,
�[0;32m 116�[0m )
�[0;32m 118�[0m �[38;5;28;01mif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39m_early_exit:
�[0;32m 119�[0m �[38;5;28;01mraise�[39;00m _TunerExitException()

File �[1;32m~\anaconda3\Lib\site-packages\pytorch_lightning\tuner\lr_finder.py:273�[0m, in �[0;36mlr_find�[1;34m(trainer, model, min_lr, max_lr, num_training, mode, early_stop_threshold, update_attr)�[0m
�[0;32m 270�[0m log�[38;5;241m.�[39minfo(�[38;5;124mf�[39m�[38;5;124m"�[39m�[38;5;124mLearning rate set to �[39m�[38;5;132;01m{�[39;00mlr�[38;5;132;01m}�[39;00m�[38;5;124m"�[39m)
�[0;32m 272�[0m �[38;5;66;03m# Restore initial state of model�[39;00m
�[1;32m--> 273�[0m trainer�[38;5;241m.�[39m_checkpoint_connector�[38;5;241m.�[39mrestore(ckpt_path)
�[0;32m 274�[0m trainer�[38;5;241m.�[39mstrategy�[38;5;241m.�[39mremove_checkpoint(ckpt_path)
�[0;32m 275�[0m trainer�[38;5;241m.�[39mfit_loop�[38;5;241m.�[39mrestarting �[38;5;241m=�[39m �[38;5;28;01mFalse�[39;00m �[38;5;66;03m# reset restarting flag as checkpoint restoring sets it to True�[39;00m

File �[1;32m~\anaconda3\Lib\site-packages\pytorch_lightning\trainer\connectors\checkpoint_connector.py:224�[0m, in �[0;36mCheckpointConnector.restore�[1;34m(self, checkpoint_path)�[0m
�[0;32m 211�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mrestore�[39m(�[38;5;28mself�[39m, checkpoint_path: Optional[_PATH] �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m) �[38;5;241m-�[39m�[38;5;241m>�[39m �[38;5;28;01mNone�[39;00m:
�[0;32m 212�[0m �[38;5;250m �[39m�[38;5;124;03m"""Attempt to restore everything at once from a 'PyTorch-Lightning checkpoint' file through file-read and�[39;00m
�[0;32m 213�[0m �[38;5;124;03m state-restore, in this priority:�[39;00m
�[0;32m 214�[0m
�[1;32m (...)�[0m
�[0;32m 222�[0m �[38;5;124;03m checkpoint_path: Path to a PyTorch Lightning checkpoint file.�[39;00m
�[0;32m 223�[0m �[38;5;124;03m """�[39;00m
�[1;32m--> 224�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mresume_start(checkpoint_path)
�[0;32m 226�[0m �[38;5;66;03m# restore module states�[39;00m
�[0;32m 227�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mrestore_datamodule()

File �[1;32m~\anaconda3\Lib\site-packages\pytorch_lightning\trainer\connectors\checkpoint_connector.py:90�[0m, in �[0;36mCheckpointConnector.resume_start�[1;34m(self, checkpoint_path)�[0m
�[0;32m 88�[0m rank_zero_info(�[38;5;124mf�[39m�[38;5;124m"�[39m�[38;5;124mRestoring states from the checkpoint path at �[39m�[38;5;132;01m{�[39;00mcheckpoint_path�[38;5;132;01m}�[39;00m�[38;5;124m"�[39m)
�[0;32m 89�[0m �[38;5;28;01mwith�[39;00m pl_legacy_patch():
�[1;32m---> 90�[0m loaded_checkpoint �[38;5;241m=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39mtrainer�[38;5;241m.�[39mstrategy�[38;5;241m.�[39mload_checkpoint(checkpoint_path)
�[0;32m 91�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_loaded_checkpoint �[38;5;241m=�[39m _pl_migrate_checkpoint(loaded_checkpoint, checkpoint_path)

File �[1;32m~\anaconda3\Lib\site-packages\pytorch_lightning\strategies\strategy.py:359�[0m, in �[0;36mStrategy.load_checkpoint�[1;34m(self, checkpoint_path)�[0m
�[0;32m 357�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mload_checkpoint�[39m(�[38;5;28mself�[39m, checkpoint_path: _PATH) �[38;5;241m-�[39m�[38;5;241m>�[39m Dict[�[38;5;28mstr�[39m, Any]:
�[0;32m 358�[0m torch�[38;5;241m.�[39mcuda�[38;5;241m.�[39mempty_cache()
�[1;32m--> 359�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mcheckpoint_io�[38;5;241m.�[39mload_checkpoint(checkpoint_path)

File �[1;32m~\anaconda3\Lib\site-packages\lightning_fabric\plugins\io\torch_io.py:86�[0m, in �[0;36mTorchCheckpointIO.load_checkpoint�[1;34m(self, path, map_location)�[0m
�[0;32m 83�[0m �[38;5;28;01mif�[39;00m �[38;5;129;01mnot�[39;00m fs�[38;5;241m.�[39mexists(path):
�[0;32m 84�[0m �[38;5;28;01mraise�[39;00m �[38;5;167;01mFileNotFoundError�[39;00m(�[38;5;124mf�[39m�[38;5;124m"�[39m�[38;5;124mCheckpoint at �[39m�[38;5;132;01m{�[39;00mpath�[38;5;132;01m}�[39;00m�[38;5;124m not found. Aborting training.�[39m�[38;5;124m"�[39m)
�[1;32m---> 86�[0m �[38;5;28;01mreturn�[39;00m pl_load(path, map_location�[38;5;241m=�[39mmap_location)

File �[1;32m~\anaconda3\Lib\site-packages\lightning_fabric\utilities\cloud_io.py:51�[0m, in �[0;36m_load�[1;34m(path_or_url, map_location)�[0m
�[0;32m 49�[0m fs �[38;5;241m=�[39m get_filesystem(path_or_url)
�[0;32m 50�[0m �[38;5;28;01mwith�[39;00m fs�[38;5;241m.�[39mopen(path_or_url, �[38;5;124m"�[39m�[38;5;124mrb�[39m�[38;5;124m"�[39m) �[38;5;28;01mas�[39;00m f:
�[1;32m---> 51�[0m �[38;5;28;01mreturn�[39;00m torch�[38;5;241m.�[39mload(f, map_location�[38;5;241m=�[39mmap_location)

File �[1;32m~\anaconda3\Lib\site-packages\torch\serialization.py:1470�[0m, in �[0;36mload�[1;34m(f, map_location, pickle_module, weights_only, mmap, **pickle_load_args)�[0m
�[0;32m 1462�[0m �[38;5;28;01mreturn�[39;00m _load(
�[0;32m 1463�[0m opened_zipfile,
�[0;32m 1464�[0m map_location,
�[1;32m (...)�[0m
�[0;32m 1467�[0m �[38;5;241m�[39m�[38;5;241m�[39mpickle_load_args,
�[0;32m 1468�[0m )
�[0;32m 1469�[0m �[38;5;28;01mexcept�[39;00m pickle�[38;5;241m.�[39mUnpicklingError �[38;5;28;01mas�[39;00m e:
�[1;32m-> 1470�[0m �[38;5;28;01mraise�[39;00m pickle�[38;5;241m.�[39mUnpicklingError(_get_wo_message(�[38;5;28mstr�[39m(e))) �[38;5;28;01mfrom�[39;00m �[38;5;28;01mNone�[39;00m
�[0;32m 1471�[0m �[38;5;28;01mreturn�[39;00m _load(
�[0;32m 1472�[0m opened_zipfile,
�[0;32m 1473�[0m map_location,
�[1;32m (...)�[0m
�[0;32m 1476�[0m �[38;5;241m�[39m�[38;5;241m�[39mpickle_load_args,
�[0;32m 1477�[0m )
�[0;32m 1478�[0m �[38;5;28;01mif�[39;00m mmap:

�[1;31mUnpicklingError�[0m: Weights only load failed. This file can still be loaded, to do so you have two options, �[1mdo those steps only if you trust the source of the checkpoint�[0m.
(1) In PyTorch 2.6, we changed the default value of the weights_only argument in torch.load from False to True. Re-running torch.load with weights_only set to False will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source.
(2) Alternatively, to load with weights_only=True please check the recommended steps in the following error message.
WeightsUnpickler error: Unsupported global: GLOBAL neuralprophet.configure.ConfigSeasonality was not an allowed global by default. Please use torch.serialization.add_safe_globals([ConfigSeasonality]) or the torch.serialization.safe_globals([ConfigSeasonality]) context manager to allowlist this global if you trust this class/function.

Check the documentation of torch.load to learn more about types accepted by default with weights_only https://pytorch.org/docs/stable/generated/torch.load.html.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant