@@ -38,90 +38,6 @@ def __init__(
3838 avTime = 0.0 , # Averaging window to extract CDF file
3939 alreadyRun = None , # Option2: Do more stuff with a class that has already been created and store
4040 ):
41- """
42- TGLF class that manages the run and the results.
43-
44- The philosophy of this is that a single 'tglf' class will handle the tglf simulation and results
45- at one time slice but with possibility of several radii at once.
46-
47- It can also handle different TGLF settings, running them one by one, storing results in folders and then
48- grabbing them.
49-
50- Scans can also be run. At several radii at once if wanted.
51-
52- *Note*
53- The 'run' command does not require label. When performing a 'read', the results extracted from
54- the specified folder will be saved with the label indicated in 'read', in the "results" or "scans"
55- dictionaries. Plotting then can happen with more than one label of the same category.
56-
57- *Note*
58- The 'run' command uses input.tglf from the specified folder, but one can change the Settings presets,
59- extraOptions and multipliers. The modified inputs is not rewritten in the actual folder, it is only written
60- in the tmp folder on which the simulation takes place.
61-
62- *Note*
63- After a 'prep' command, the class can be detached from the file system, as it stores the input tglf file
64- to run later with different options. It also stores the Normalizations, since the runs are expected
65- to only change dimensionless parameteres.
66-
67- **************************************
68- ***** Example use for standalone *****
69- **************************************
70-
71- # Initialize class, by specifying where the inputs to TGLF come from (TRANSP cdf)
72- tglf = TGLF(cdf='~/testTGLF/12345B12.CDF',time=1.45,avTime=0.1,rhos=[0.4,0.6])
73-
74- # Prepare TGLF (this will create input.tglf in the specified folder)
75- cdf = tglf.prep_using_tgyro('~/testTGLF/')
76-
77- # Run standalone TGLF (this will find the input.tglf in the previous folder,
78- # and then copy to this specify TGLF run, and run it there)
79- tglf.run(subfolder='tglf1/',Settings=1,extraOptions={'NS':3})
80-
81- # Read results
82- tglf.read(label='run1',folder='~/testTGLF/tglf1/')
83-
84- # Plot
85- plt.ion(); tglf.plot(labels=['run1'])
86-
87- *********************************
88- ***** Example use for scans *****
89- *********************************
90-
91- # Initialize class, by specifying where the inputs to TGLF come from (TRANSP cdf)
92- tglf = TGLF(cdf='~/testTGLF/12345B12.CDF',time=1.45,avTime=0.1,rhos=[0.4,0.6])
93-
94- # Prepare TGLF (this will create input.tglf in the specified folder)
95- cdf = tglf.prep_using_tgyro('~/testTGLF/')
96-
97- # Run
98- tglf.run_scan('scan1/',Settings=1,varUpDown=np.linspace(0.5,2.0,20),variable='RLTS_2')
99-
100- # Read scan
101- tglf.read_scan(label='scan1',variable='RLTS_2')
102-
103- # Plot
104- plt.ion(); tglf.plot_scan(labels=['scan1'],variableLabel='RLTS_2')
105-
106- ****************************
107- ***** Special analysis *****
108- ****************************
109-
110- Following the prep phase, we can run "runAnalysis()" and select among the different options:
111- - Chi_inc
112- - D and V for trace impurity
113- Then, plotAnalysis() with the right option for different labels too
114-
115- ****************************
116- ***** Do more stuff with a class that has already been created and store
117- ****************************
118-
119- tglf = TGLF(alreadyRun=previousClass)
120- tglf.FolderGACODE = '~/testTGLF/'
121-
122- ** Modify the class as wish, and do run,read, etc **
123- ** Because normalizations are stored in the prep phase, that's all ready **
124- """
12541
12642 super ().__init__ (rhos = rhos )
12743
0 commit comments