Skip to content

Commit ddf661f

Browse files
Updated in RefutationModel.fit documentation.
1 parent 034b278 commit ddf661f

File tree

3 files changed

+19
-19
lines changed

3 files changed

+19
-19
lines changed

README.md

Lines changed: 13 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -42,8 +42,8 @@ the package’s functionality (without neural-symbolic components) are
4242
given by (Karapanagiotis and Liebald 2023).
4343

4444
The training loops for both deep and symbolic learning models are
45-
implemented in [tensorflow](https://www.tensorflow.org) (Martín Abadi et
46-
al. 2015). The pure deep learning model inherits from the
45+
implemented in [tensorflow](https://www.tensorflow.org) (Abadi et al.
46+
2015). The pure deep learning model inherits from the
4747
[keras](https://keras.io) model class (Chollet et al. 2015). The
4848
neural-symbolic model is implemented using the logic tensor network
4949
([LTN](https://pypi.org/project/ltn/)) framework (Badreddine et al.
@@ -257,6 +257,15 @@ The package is distributed under the [MIT license](LICENSE.txt).
257257
<div id="refs" class="references csl-bib-body hanging-indent"
258258
entry-spacing="0">
259259

260+
<div id="ref-tensorflow2015" class="csl-entry">
261+
262+
Abadi, Martín, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
263+
Craig Citro, Greg S. Corrado, et al. 2015. “TensorFlow:
264+
<span class="nocase">Large-scale</span> Machine Learning on
265+
Heterogeneous Systems.” <https://www.tensorflow.org/>.
266+
267+
</div>
268+
260269
<div id="ref-badreddine2022" class="csl-entry">
261270

262271
Badreddine, Samy, Artur d’Avila Garcez, Luciano Serafini, and Michael
@@ -267,7 +276,7 @@ Spranger. 2022. “Logic Tensor Networks.” *Artificial Intelligence* 303:
267276

268277
<div id="ref-keras2015" class="csl-entry">
269278

270-
Chollet, François et al. 2015. “Keras.”
279+
Chollet, François et al. 2015. “Keras.” <https://keras.io>.
271280

272281
</div>
273282

@@ -302,7 +311,7 @@ Adaptation.” In *Proceedings of the VLDB Endowment*, 15:465–77.
302311

303312
Karapanagiotis, Pantelis, and Marius Liebald. 2023. “Entity Matching
304313
with Similarity Encoding: A Supervised Learning Recommendation Framework
305-
for Linking (Big) Data.”
314+
for Linking (Big) Data.” <http://dx.doi.org/10.2139/ssrn.4541376>.
306315

307316
</div>
308317

@@ -324,15 +333,6 @@ Systems* 293 (June): 111678.
324333

325334
</div>
326335

327-
<div id="ref-tensorflow2015" class="csl-entry">
328-
329-
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
330-
Craig Citro, Greg S. Corrado, et al. 2015. “TensorFlow:
331-
<span class="nocase">Large-scale</span> Machine Learning on
332-
Heterogeneous Systems.”
333-
334-
</div>
335-
336336
<div id="ref-mudgal2018" class="csl-entry">
337337

338338
Mudgal, Sidharth, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon

src/neer_match/__init__.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,4 +3,4 @@
33
Neural-symbolic Entity Reasoning and Matching.
44
"""
55

6-
__version__ = '0.7.33'
6+
__version__ = '0.7.34'

src/neer_match/reasoning.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -17,8 +17,8 @@ class RefutationModel(NSMatchingModel):
1717
1818
Inherits :class:`neer_match.matching_model.NSMatchingModel` and provides additional
1919
functionality for refutation logic. The built-in refutation logic allows one to
20-
refute the significance of one or more conjectured associations in detecting
21-
entity matches.
20+
refute the significance of one or more similarities of a conjectured association
21+
in detecting entity matches.
2222
"""
2323

2424
def __make_claims(self, axiom_generator, refutation):
@@ -181,9 +181,9 @@ def fit(
181181
a dictionary, the keys are association names and the values are
182182
similarity names. If the value is None, all similarities in the
183183
association are used.
184-
satisfiability_threshold: The satisfiability threshold.
185-
axioms_non_sat_scale: The non-satisfiability scale.
186-
axioms_sat_scale: The satisfiability scale.
184+
penalty_threshold: The penalty threshold.
185+
penalty_scale: The non-satisfiability scale.
186+
penalty_decay: The non-satisfiability decay.
187187
satisfiability_weight: The satisfiability weight.
188188
verbose: The verbosity level.
189189
log_mod_n: The logging frequency.

0 commit comments

Comments
 (0)