File tree Expand file tree Collapse file tree 2 files changed +7
-7
lines changed Expand file tree Collapse file tree 2 files changed +7
-7
lines changed Original file line number Diff line number Diff line change @@ -57,7 +57,7 @@ Section strong.
57
57
Hypothesis PH : forall n, (forall m, m < n -> P m) -> P n.
58
58
59
59
Lemma strong' : forall n m, m <= n -> P m.
60
- induction n; simpl; intuition; apply PH; intuition.
60
+ induction n; simpl; intuition; apply PH; intuition; auto with * .
61
61
exfalso; lia.
62
62
Qed .
63
63
@@ -97,7 +97,7 @@ Theorem drop_mod2 : forall n k,
97
97
98
98
do 2 (destruct n; simpl in *; repeat rewrite untimes2 in *; intuition).
99
99
100
- destruct k; simpl in *; intuition.
100
+ destruct k; simpl in *; intuition; auto with * .
101
101
102
102
destruct k; simpl; intuition.
103
103
rewrite <- plus_n_Sm.
373
373
Theorem Npow2_nat : forall n, nat_of_N (Npow2 n) = pow2 n.
374
374
induction n as [|n IHn]; simpl; intuition.
375
375
rewrite <- IHn; clear IHn.
376
- case_eq (Npow2 n); intuition; zify; intuition.
376
+ case_eq (Npow2 n); intuition; zify; intuition; auto with * .
377
377
Qed .
378
378
379
379
Theorem pow2_N : forall n, Npow2 n = N.of_nat (pow2 n).
Original file line number Diff line number Diff line change @@ -531,15 +531,15 @@ Theorem natToWord_wordToNat : forall sz w, natToWord sz (wordToNat w) = w.
531
531
Qed .
532
532
533
533
Theorem roundTrip_0 : forall sz, wordToNat (natToWord sz 0) = 0.
534
- induction sz; simpl; intuition.
534
+ induction sz; simpl; intuition; auto with * .
535
535
Qed .
536
536
537
537
Hint Rewrite roundTrip_0 : wordToNat.
538
538
539
539
Lemma wordToNat_natToWord' : forall sz w, exists k, wordToNat (natToWord sz w) + k * pow2 sz = w.
540
540
induction sz as [|sz IHsz]; simpl; intro w; intuition; repeat rewrite untimes2.
541
541
542
- exists w; intuition.
542
+ exists w; intuition; auto with * .
543
543
544
544
case_eq (mod2 w); intro Hmw.
545
545
573
573
Theorem wordToNat_natToWord:
574
574
forall sz w, exists k, wordToNat (natToWord sz w) = w - k * pow2 sz /\ (k * pow2 sz <= w)%nat.
575
575
Proof .
576
- intros sz w; destruct (wordToNat_natToWord' sz w) as [k]; exists k; intuition.
576
+ intros sz w; destruct (wordToNat_natToWord' sz w) as [k]; exists k; intuition; auto with * .
577
577
Qed .
578
578
579
579
Lemma wordToNat_natToWord_2: forall sz w : nat,
@@ -5125,7 +5125,7 @@ Qed.
5125
5125
5126
5126
Lemma ZToWord_plus: forall sz a b, ZToWord sz (a + b) = ZToWord sz a ^+ ZToWord sz b.
5127
5127
Proof .
5128
- destruct sz as [|sz]; intros n m; intuition.
5128
+ destruct sz as [|sz]; intros n m; intuition; auto with * .
5129
5129
rewrite wplus_wplusZ.
5130
5130
unfold wplusZ, wordBinZ.
5131
5131
destruct (wordToZ_ZToWord' (S sz) n) as [k1 D1].
You can’t perform that action at this time.
0 commit comments