Skip to content

Commit efd38b4

Browse files
committed
1 parent fe4c1d8 commit efd38b4

File tree

2 files changed

+7
-7
lines changed

2 files changed

+7
-7
lines changed

src/bbv/NatLib.v

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -57,7 +57,7 @@ Section strong.
5757
Hypothesis PH : forall n, (forall m, m < n -> P m) -> P n.
5858

5959
Lemma strong' : forall n m, m <= n -> P m.
60-
induction n; simpl; intuition; apply PH; intuition.
60+
induction n; simpl; intuition; apply PH; intuition; auto with *.
6161
exfalso; lia.
6262
Qed.
6363

@@ -97,7 +97,7 @@ Theorem drop_mod2 : forall n k,
9797

9898
do 2 (destruct n; simpl in *; repeat rewrite untimes2 in *; intuition).
9999

100-
destruct k; simpl in *; intuition.
100+
destruct k; simpl in *; intuition; auto with *.
101101

102102
destruct k; simpl; intuition.
103103
rewrite <- plus_n_Sm.
@@ -373,7 +373,7 @@ Qed.
373373
Theorem Npow2_nat : forall n, nat_of_N (Npow2 n) = pow2 n.
374374
induction n as [|n IHn]; simpl; intuition.
375375
rewrite <- IHn; clear IHn.
376-
case_eq (Npow2 n); intuition; zify; intuition.
376+
case_eq (Npow2 n); intuition; zify; intuition; auto with *.
377377
Qed.
378378

379379
Theorem pow2_N : forall n, Npow2 n = N.of_nat (pow2 n).

src/bbv/Word.v

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -531,15 +531,15 @@ Theorem natToWord_wordToNat : forall sz w, natToWord sz (wordToNat w) = w.
531531
Qed.
532532

533533
Theorem roundTrip_0 : forall sz, wordToNat (natToWord sz 0) = 0.
534-
induction sz; simpl; intuition.
534+
induction sz; simpl; intuition; auto with *.
535535
Qed.
536536

537537
Hint Rewrite roundTrip_0 : wordToNat.
538538

539539
Lemma wordToNat_natToWord' : forall sz w, exists k, wordToNat (natToWord sz w) + k * pow2 sz = w.
540540
induction sz as [|sz IHsz]; simpl; intro w; intuition; repeat rewrite untimes2.
541541

542-
exists w; intuition.
542+
exists w; intuition; auto with *.
543543

544544
case_eq (mod2 w); intro Hmw.
545545

@@ -573,7 +573,7 @@ Qed.
573573
Theorem wordToNat_natToWord:
574574
forall sz w, exists k, wordToNat (natToWord sz w) = w - k * pow2 sz /\ (k * pow2 sz <= w)%nat.
575575
Proof.
576-
intros sz w; destruct (wordToNat_natToWord' sz w) as [k]; exists k; intuition.
576+
intros sz w; destruct (wordToNat_natToWord' sz w) as [k]; exists k; intuition; auto with *.
577577
Qed.
578578

579579
Lemma wordToNat_natToWord_2: forall sz w : nat,
@@ -5125,7 +5125,7 @@ Qed.
51255125

51265126
Lemma ZToWord_plus: forall sz a b, ZToWord sz (a + b) = ZToWord sz a ^+ ZToWord sz b.
51275127
Proof.
5128-
destruct sz as [|sz]; intros n m; intuition.
5128+
destruct sz as [|sz]; intros n m; intuition; auto with *.
51295129
rewrite wplus_wplusZ.
51305130
unfold wplusZ, wordBinZ.
51315131
destruct (wordToZ_ZToWord' (S sz) n) as [k1 D1].

0 commit comments

Comments
 (0)