- Preprocessing
- Training and Testing
- Binary Relevance
- Classifier: GaussianNB
- Classifier: MultinomialNB
- Classifier: SVC
- Classifier: Logistic regression
- Classifier: Random Forest
- Classifier: Decision Tree
- Classifier Chain
- Classifier: GaussianNB
- Classifier: MultinomialNB
- Classifier: SVC
- Classifier: Logistic Regression
- Classifier: Random Forest
- Classifier: Decision Tree
- Label Powerset
- Classifier: GaussianNB
- Classifier: MultinomialNB
- Classifier: SVC
- Classifier: Logisitic Regression
- Classifier: Random Forest
- Classifier: Decision Tree
- Adaptive approach: MLKNN
- Ensemble Learning
- LSTM
-
Couldn't load subscription status.
- Fork 2
A multi label classification for identifying the most probabilistic companies a problem might be asked upon in its interview. It includes several approaches like label transformation, algorithm adaption, ensemble learning and LSTM. Base classifiers like Gaussian NB, Multinomial NB, Logistic Regression, Descision Tree, Random Forest and SVC is us…
Couldn't load subscription status.
pro-grepper-org/multi-label-classification
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
About
A multi label classification for identifying the most probabilistic companies a problem might be asked upon in its interview. It includes several approaches like label transformation, algorithm adaption, ensemble learning and LSTM. Base classifiers like Gaussian NB, Multinomial NB, Logistic Regression, Descision Tree, Random Forest and SVC is us…